We report the first experimental observation of 2D optical discrete solitons in nonlinear photonic lattices.
SummaryNonlinear wave propagation in photonic lattices is becoming ever more important,
We demonstrate both theoretically and experimentally that optical Airy beams propagating in free space can perform ballistic dynamics akin to those of projectiles moving under the action of gravity. The parabolic trajectories of these beams as well as the motion of their center of gravity were observed in good agreement with theory. The possibility of circumventing an obstacle placed in the path of the Airy beam is discussed.
We study spatial soliton dynamics in nano-particle suspensions. Starting from the Nernst-Planck and Smoluchowski equations, we demonstrate that in these systems the underlying nonlinearities as well as the nonlinear Rayleigh losses depend exponentially on optical intensity. Two different nonlinear regimes are identified depending on the refractive index contrast of the nanoparticles involved and the interesting prospect of self-induced transparency is demonstrated. Soliton stability is systematically analyzed for both 1D and 2D configurations and their propagation dynamics in the presence of Rayleigh losses is examined. The possibility of synthesizing artificial nonlinearities using mixtures of nanosuspensions is also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.