Sixty-eight (Experiment 1, 46 days feeding) and sixteen (Experiment 2, 21 days feeding) 21-days-old weaned pigs were allotted to four dietary treatments including control, 0.6% organic acids (OA), 0.1% nucleotides (NA) and 0.6% OA plus 0.1% NA for determining the dietary effects. In Experiment 1, OA enhanced peripheral blood mononuclear cells proliferation on day 28 and 46. The plasma immunoglobulin (Ig) A level was elevated by OA (p < 0.06) and NA (p < 0.07), respectively. In Experiment 2, NA increased plasma IgM level, and had an interactive effect with OA on ileal Peyer's patches and mesenteric lymph node lymphocyte proliferation, bile and plasma IgA levels, and jejunal crypt depth. NA elevated gastric pepsin and jejunal alkaline phosphatase activities, however, decreased ileal aminopeptidase N, sucrase or maltase activity. These results suggest that OA and NA have synergistically enhanced the gut-associated lymphocyte responses and NA modulates the digestive tract development of weaned pigs.
The potential benefits of Aspergillus-fermented mung bean seed coats (FMSC) for weaned pigs remain unexplored. Both in vitro and in vivo experiments were employed to evaluate the potential of FMSC supplement on the growth, antioxidant and immune responses of weaned pigs. The total polyphenols and DPPH scavenging capability of ethanol extract of FMSC exhibited a greater (p < 0.01) increase than those of pre-fermentation. With the addition of the polyphenol of FMSC extract, an increase in phagocytosis by neutrophils and proliferation of peripheral blood mononuclear cells (PBMC) were found. However, these observations were significantly inhibited (p < 0.05) in those activated cells. Next, 96 weaned pigs were allotted with a randomized complete block design into four dietary treatments, including 0 (control), 600, 1200 or 1800 mg/kg FMSC in a corn-soya bean meal basal diet for a 35-day trial. The pigs were injected with swine enzootic pneumonia (SEP) vaccines at day 3 and day 21 respectively. The results showed that dietary treatment failed to affect growth performance or serum SEP titre. The diet supplemented with 600-1800 mg/kg FMSC decreased faecal lactoferrin on day 21 and increased plasma trolox equivalent antioxidant capacity (TEAC) and erythrocytes catalase activity, as well as decreased (p < 0.01) plasma malondialdehyde (MDA) concentration on day 35. Diet supplementation of 1800 mg/kg FMSC increased phagocytosis by neutrophils and PBMC proliferation induced by pokeweed mitogen (PWM). However, the polymorphonuclear leucocytes (PMN)-positive respiratory burst cells were decreased in the supplementation of 1200 or 1800 mg/kg FMSC respectively. In addition, the serum haptoglobin concentration was decreased in the supplementation with 1200 mg/kg FMSC. Taken together, FMSC enriches polyphenols with antioxidative and immune modulated properties. After feeding FMSC, an improvement in antioxidative capability and immunocompetence was found, implying that FMSC could provide as a feed additive at optimal level 1200 mg/kg for weaned pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.