A geological exploration company is a modern enterprise, possessing advanced techniques and carrying out full range of high quality exploration for all types of solid minerals in accordance with world standards, which is the center of competence in uranium geology, as well as provides its services in the field of exploration for solid minerals. To date, the tasks of ensuring replenishment of explored mineral reserves, increasing efficiency of their use, as well as increasing profitability and capitalization of enterprises of mining-and-processing industry remains relevant. To implement a set of measures for solving problems associated with prospecting, exploration, and exploitation of uranium deposits, it is urgently required to develop the following improved approaches and methods: modernization and re-equipment of methodological and technical base of the enterprise’s chemical analytical laboratory for implementation mineralogical and radioisotope methods of prospecting for uranium deposits; carrying out work to expand the scope of accreditation, environmental research, and training of specialists for field laboratories; creation of an information system for geological data bank, which allows organizing a single information space and ensuring availability of the necessary reliable data, as well as their safety/integrity and the data access control. The conducted research formed the basis for the development of mechanisms for achieving strategic targets and implementing strategic objectives of the enterprise. To ensure sustainable growth of key performance indicators of the enterprise, it is necessary to focus on long-term successful work. This is connected with restructuring of assets and diversification of the company's activities, development of innovative methods and facilities for prospecting and laboratory-and-technological research, improvement of the set of radioecological studies at exploration areas, and introduction of the principles of corporate and legal culture. Providing growing demands of affiliated mining enterprises for mineable resources by replenishing the uranium resource base should be based on active prospecting, exploration, and discovery of new uranium deposits, as well as formation of highly efficient professional personnel. To improve management efficiency, the enterprise should activate and improve the quality of exploration, as well as diversify the company's activities and reduce possible risks. Implementation of this approach is possible through the formation of highly efficient professional personnel based on the recognition of high economic value of human resources. In addition, it is necessary to actively conduct exploration in promising areas for discovering new deposits and, correspondingly, increasing and replenishing the company's uranium reserves and increasing its assets. This will allow prolonging the life of the company’s mines until 2040 due to increasing additional explored reserves.
With increasing depth of exploration and process boreholes (at small drilling diameters), the probability of deviation of the borehole path from design trajectory increases many times; i. e. zenith curvature and azimuth deviation of the borehole path occur. Therefore, developing methods for keeping vertical path of the borehole when drilling deeper horizons of ore bodies is a very topical issue. The paper presents the results of developing a new bottom-hole assembly for drilling boreholes in soft rocks using screw casing centralizers, which provide good stabilizing and centering effects to mitigate horizontal departure of the hole axis from the design direction and minimize vertical curvature of the hole path (zenith angle) while maintaining sufficient drill string flexibility. The developed technical solutions provide simplicity of design and ability to adapt to wide range of mining, geological and technological drilling conditions. The feasibility of manufacturing the centralizers by own efforts and the technological feasibility of quick and easy connecting the centralizer with other elements of the bottom-hole assembly have been substantiated. The manufacture efficiency is proved by the use of inexpensive and wear-resistant materials in the centralizer armouring, for which tungsten-cobalt or titanium-cobalt hard-alloy inserts were used. In addition, prevailing volume of borehole drilling in soft rocks allowed using replaceable centering elements, as well as their repair and restoration to increase their service life. The manufactured centralizer has a low production cost due to the design simplicity and the use of inexpensive wearresistant material and will compete in the market of drilling tools and technical devices for drill string stabilization. The economic effect from the introduction of the self-produced centralizers amounted to more than 170,000 tenge per a borehole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.