The effective interactions formed by neutron rescattering between the nuclei fixed in nodes of the crystalline lattice of neutron star crusts have been considered. In the case of two-body resonances in neutron-nucleus subsystems new neutron resonances of few-body nature come into existence in the overdense crystal under certain conditions. The energies and widths of new resonances get additional dependence on the lattice parameters. The effective interactions result in nonlinear correction to the equation of state determined by the balance of gravitational, Coulomb and nuclear resonance forces. This leads to resonant oscillations of density in the accordant layers of crusts that are accompanied by oscillations of gamma radiation. The phenomena may clarify some processes connected with few-body neutron resonances in neutron star crusts, that have influence on the microstructure of pulsar impulses. *
The paper considers the chains of successive electron capture reactions by nuclei of the iron group which take place in the crystal structures of neutron star envelopes. It is shown that as a result of such reactions the daughter nuclei in excited states accumulate within certain layers of neutron star crusts. The phonon model of interactions is proposed between the excited nuclei in the crystalline structure, as well as formation of highly excited nuclear states which emit neutrons and higher energy photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.