ABSTRACT:The thermal degradation and the combustion behavior of glass fiberreinforced PA 66 materials containing red phosphorus were investigated. Thermogravimetry (TG), TG coupled with FTIR, and TG coupled with mass spectroscopy were used to investigate the thermal decomposition. The flame retardant red phosphorus was investigated with respect to the decomposition kinetics and the release of volatile products. The combustion behavior was characterized using a cone calorimeter. Fire risks and fire hazards were monitored versus external heat fluxes between 30 and 75 kW/m 2 . Red phosphorus acts in the solid phase and its efficiency depends on the external heat flux. The use of red phosphorus results in an increased amount of residue and in a corresponding decrease in total heat release. The decrease of the mass loss rate peak results in a corresponding decrease of the peak heat release. With increasing external heat flux applied the first effect on the total heat release decreases linearly, whereas the second effect on the peak heat release expands linearly. The investigation provides insight into the mechanisms of how the fire retardant PA 66 is achieved by red phosphorus controlling the degradation kinetics. Taking into account that a decrease of the volatile products also leads to a decrease of heat production in the flame zone and that the char acts as heat transfer barrier, a reduced pyrolysis temperature is suggested as a further feedback effect.
Nanocomposites of bisphenol A polycarbonate with 2, 4, 6, and 15 wt% multiwall carbon nanotubes (MWNT) and their use in fire retardancy are investigated. Their thermal behavior and pyrolysis are characterized using thermogravimetry, differential scanning calorimeter, oscillatory shear rheology, and dynamic mechanical analysis. The flammability is addressed using LOI and UL 94; the fire behavior, with a cone calorimeter using different irradiation. With increasing MWNT content the storage modulus is increased (10–20%) and melt viscosity increases by several orders of magnitude, particularly for low shear rates. The melt flow, dripping, and deformation during fire are hindered, which influences UL 94 and cone calorimeter results. The peak heat release rate is reduced up to 40–50% due to an improved barrier for small amounts (2 wt%) of MWNT and for low irradiation, whereas the effect is reduced for increasing irradiation and nearly vanishes for increasing filling. Adjuvant but also deleterious mechanisms result in the complex dependency on the MWNT content. Significant flame retardancy effects are specific and limited to only some fire properties. This study allows the materials' potential for implementation in different fire scenarios and tests to be assessed and provides insight into active mechanisms. POLYM. ENG. SCI., 48:149–158, 2008. © 2007 Society of Plastics Engineers
The flame retardant effect of zinc sulphide (ZnS) in plasticised poly(vinyl chloride) (PVC‐P) materials was investigated. PVC‐P containing different combinations of additives such as 5% ZnS, 5% of antimony oxide (Sb2O3) and 5% of mixtures based on Sb2O3 and ZnS were compared. The thermal degradation and the combustion behaviour were studied using thermogravimetry (TG), coupled with FTIR (TG–FTIR) or with mass spectroscopy (TG–MS), and a cone calorimeter, respectively. A detailed and unambiguous understanding of the decomposition and release of the pyrolysis products was obtained using both TG–MS and TG–FTIR. The influence of ZnS, Sb2O3 and the corresponding mixtures on the thermal decomposition of PVC‐P was demonstrated. Synergism was observed for the combination of the two additives. The combustion behaviour (time to ignition, heat release, smoke production, mass loss, CO production) was monitored versus external heat fluxes between 30 and 75 kW m−2 with the cone calorimeter. Adding 5% of ZnS has no significant influence on the fire behaviour of PVC‐P materials beyond a dilution effect, whereas Sb2O3 works as an effective fire retardant. Synergism of ZnS and Sb2O3 allows the possibility of replacing half of Sb2O3 by ZnS to reach equivalent fire retardancy. © 2002 Society of Chemical Industry
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.