A glycoprotein H (gH)-deleted herpes simplex virus type 2 (HSV-2) was evaluated as a vaccine for the prevention of HSV-induced disease. This virus, which we term a DISC (disabled infectious single cycle) virus, can only complete one replication cycle in normal cells and should thus be safe yet still able to stimulate broad humoral and cell-mediated antiviral immune responses. A gH-deleted HSV-2 virus that has been tested as a vaccine in the guinea pig model of recurrent HSV-2 infection was constructed. Animals vaccinated with DISC HSV-2 showed complete protection against primary HSV-2-induced disease, even when challenged 6 months after vaccination. In addition, the animals were almost completely protected against recurrent disease. Even at low vaccination doses, there was a high degree of protection against primary disease. A reduction in recurrent disease symptoms was also observed following therapeutic vaccination of animals already infected with wild type HSV-2.
The vaccine potential of a mutant herpes simplex virus (HSV) type 1, with a deletion in the glycoprotein H (gH) gene, was evaluated. The virus requires a gH-expressing cell line for multi-cycle growth but can complete a single cycle of infection in noncomplementing cells. Such viruses, termed DISC (disabled infectious single cycle) viruses, should be safe, yet still able to stimulate humoral and cell-mediated responses against a broad range of virus antigens in vaccinated hosts. Prophylactic vaccination of guinea pigs with DISC HSV-1, by ear scarification or direct infection of the vaginal mucosa, afforded a high degree of protection against HSV-2-induced primary genital disease and reduced significantly the frequency of subsequent disease recurrence. There was also a trend toward reduced recurrence following therapeutic vaccination of animals already infected with HSV-2. DISC HSV vaccination, therefore, offers an effective route for control of HSV disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.