In this paper we introduced Gompertz Gumbel II (GG II) distribution which generalizes the Gumbel II distribution. The new distribution is a flexible exponential type distribution which can be used in modeling real life data with varying degree of asymmetry. Unlike the Gumbel II distribution which exhibits a monotone decreasing failure rate, the new distribution is useful for modeling unimodal (Bathtub-shaped) failure rates which sometimes characterised the real life data. Structural properties of the new distribution namely, density function, hazard function, moments, quantile function, moment generating function, orders statistics, Stochastic Ordering, Renyi entropy were obtained. For the main formulas related to our model, we present numerical studies that illustrate the practicality of computational implementation using statistical software. We also present a Monte Carlo simulation study to evaluate the performance of the maximum likelihood estimators for the GGTT model. Three life data sets were used for applications in order to illustrate the flexibility of the new model.
In this paper, we proposed a new four-parameter Extended Gumbel type-2 distribution which can further be split into the Lehman type I and type II Gumbel type-2 distribution by using a generalized exponentiated
G
distribution. The distributional properties of the proposed distribution have been studied. We derive the
p
th moment; thus, we generalize some results in the literature. Expressions for the density, moment-generating function, and
r
th moment of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and provide the information matrix of the developed distribution. Two life data, which consist of data on cancer remission times and survival times of pigs, were used to show the applicability of the Extended Gumbel type-2 distribution in modelling real life data, and we found out that the new model is more flexible than its submodels.
This paper presents a new generalization of the extended Bur II distribution. We redefined the Bur II distribution using the Alpha Power Transformation (APT) to obtain a new distribution called the Alpha Power Transformed Extended Bur II distribution. We derived several mathematical properties for the new model which includes moments, moment generating function, order statistics, entropy etc. and used a maximum likelihood estimation method to obtain the parameters of the distribution. Two real-world data sets were used for applications in order to illustrate the usefulness of the new distribution.
In this work, we introduce a new generalization of the Inverted Weibull distribution called the alpha power Extended Inverted Weibull distribution using the alpha power transformation method. This approach adds an extra parameter to the baseline distribution. The statistical properties of this distribution including the mean, variance, coefficient of variation, quantile function, median, ordinary and incomplete moments, skewness, kurtosis, moment and moment generating functions, reliability analysis, Lorenz and Bonferroni and curves, Rényi of entropy and order statistics are studied. We consider the method of maximum likelihood for estimating the model parameters and the observed information matrix is derived. Simulation method and three real life data sets are presented to demonstrate the effectiveness of the new model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.