We calculate optical conductivity for bilayer dice lattices whose commensurate stackings and effective models in the vicinity of band-crossing points were considered in our previous work [1]. The inter-band optical conductivity reveals a rich activation behavior unique for each of the four stackings. We found that the intermediate energy band, which corresponds to the flat band of a single-layer dice lattice, plays a different role for different stackings. The results for effective and tight-binding models are found to be in qualitative agreement for some of the stackings and the reasons for the discrepancies for others are identified. Our findings propose optical conductivity as an effective tool to distinguish between different stackings in bilayer dice lattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.