The effect of periodic two-dimensional excitation on the development of a turbulent mixing region was studied experimentally. Controlled oscillations of variable ampli- tude and frequency were applied at the initiation of mixing between two parallel air streams. The frequency of forcing was at least an order of magnitude lower than the initial instability frequency of the flow in order to test its effect far downstream. The effect of the velocity difference between the streams was also investigated in this experiment. A typical Reynolds number based on the velocity difference and the momentum thickness of the shear layer was l04.It was determined that the spreading rate of the mixing layer is sensitive to periodic surging even if the latter is so small that it does not contribute to the initial energy of the fluctuations. Oscillations at very small amplitudes tend to increase the spreading rate of the flow by enhancing the amalgamation of neighbouring eddies, but at higher amplitudes the flow resonates with the imposed oscillation. The resonance region can extend over a significant fraction of the test section depending on the Strouhal number and a dimensionless velocity-difference parameter. The flow in the resonance region consists of a single array of large, quasi-two-dimensional vortex lumps, which do not interact with one another. The exponential shape of the mean-velocity distribution is not affected in this region, but the spreading rate of the flow with increasing distance downstream is inhibited. The Reynolds stress in this region changes sign, indicating that energy is extracted from the turbulence to the mean motion; the intensity of the spanwise fluctuations is also reduced, suggesting that the flow tends to become more two-dimensional.Amalgamation of large coherent eddies is resumed beyond the resonance region, but the flow is not universally similar. There are many indications suggesting that the large eddies in the turbulent mixing layer at fairly large Re are governed by an inviscid instability.
Strong external disturbances were introduced into a mixing layer in order to test the formation of the quasi two-dimensional coherent eddies and their survival under less than ideal conditions. Velocity and temperature correlation measurements, flow visualization, and the simultaneous use of a large number of sensors suggest that these eddies are very stable in the range of Reynolds numbers considered and they persevere in spite of the external buffeting imposed. Some measurements were carried out in a mixing layer between two parallel streams and some in a mixing layer entraining quiescent surrounding fluid. In both cases the large eddies could be described. as vortex rolls spanning the test section; these rolls may be contorted and sometimes skewed, but they are basically two-dimensional.
Interactions between large coherent structures are visualized with both schlieren photography in two air jets and dye photography in a water jet. The density difference needed for the schlieren technique is provided by an electrically heated wire ring surrounding the jet. External forcing with either single axisymmetric, single non-symmetric, combined axisymmetric or combined non-symmetric modes was applied. It was found that forcing the jet with a pair of different spinning modes leads to azimuthal distortions of the mean flow. This observation confirms and explains existing hotwire data. Simultaneous excitation with two axisymmetric modes may produce structures of higher modes or even cause structurally undistinguishable development. Streamwise structures are observed both in the unforced jet and in the axisymmetrically forced jet. They do not seem to be caused by a G6rtler instability from the concave curvature of the conventional nozzle, since they were also found in a jet flow from a specially designed nozzle with only convex contraction surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.