The corrosion resistance and hydroabrasive resistance of the developed epoxy composite coatings are investigated in this paper. The analysis of the penetration index change after τ = 50–150 days of immersion in a water medium and 10% sulfuric acid solution is carried out. The optimal ratio of the modifier and nanodispersed (Si3N4, Al2O3, AlN, and TiN) and fibrous (viscose, polyamide, matka silk, rong, and cashmere) fillers in the epoxy binder is determined. It was allowed to slow down the process of electrochemical reaction on the metal surface. The penetration of aggressive media in such a coating during the time t = 150 days is 0.8–2.8%. It is 1.5–2 times lower than the similar indexes of the initial epoxy matrix. The rational combination of the fibrous filler (wool, acrylic PAN, and cashmere), modifier, and nanodispersed (Si3N4, AlF3, IH, and ZrH) filler in the epoxy binder is found, which allows to provide optimum indexes of wear rate. The wear rate under the action of a hydroabrasive of such a coating is I = 0.20%, which is 4 times lower than the similar indexes of the initial epoxy matrix. The wear mechanism of such coatings is caused by the physical and mechanical processes of microcutting and plastic deformation of the surface layer of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.