Experimental studies have shown that endothelial cells which have been exposed to shear stress maintain a flattened and elongated shape after detachment. Their mechanical properties, which are studied using the micropipette experiments, are influenced by the level as well as the duration of the shear stress. In the present paper, we analyze these mechanical properties with the aid of two mathematical models suggested by the micropipette technique and by the geometry peculiar to these cells in their detached post-exposure state. The two models differ in their treatment of the contact zone between the cell and the micropipette. The main results are expressions for an effective Young's modulus for the cells, which are used in conjunction with the micropipette data to determine an effective Young's modulus for bovine endothelial cells, and to discuss the dependence of this modulus upon exposure to shear stress.
The viscoelastic deformation of porcine aortic endothelial cells grown under static culture conditions was measured using the micropipette technique. Experiments were conducted both for control cells (mechanically or trypsin detached from the substrate) and for cells in which cytoskeletal elements were disrupted by cytochalasin B or colchicine. The time course of the aspirated length into the pipette was measured after applying a stepwise increase in aspiration pressure. To analyze the data, a standard linear viscoelastic half-space model of the endothelial cell was used. The aspirated length was expressed as an exponential function of time. The actin microfilaments were found to be the major cytoskeletal component determining the viscoelastic response of endothelial cells grown in static culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.