This paper presents circuit techniques to improve write and read capability for dual-port SRAM design fabricated in a 45nm low-power process. The write capability is enhanced by negative write biasing without any reduction in the cell current for the other port. The result shows 12% better improvement with just 1.9% area overhead. This technique has been verified successfully on 65nm and 45nm SRAM chip and improved 120mV lower at 95% yield of minimum operation voltage than a conventional one. The read capability is enhanced by cell current boosting and word line voltage lowering schemes. The SNM is also enhanced significantly. The target is to work below 0.8V with the worst process corner variation.
KEYWORD: Laser, UAV, Radiation, Power density, Maximum level flying speed ABSTRACT: Laser-motive UAV (unmanned aerial vehicles) is a new concept UAV. Based on analysis of conservation equation of photoelectric conversion irradiated by laser energy, UAV load's demand for power density and heat convection balance, a model is established to analyze the relationship between UAV maximum level flying speed, maximum wing loading and laser irradiation power density, propulsion system output power, photovoltaic cells operating temperature, and further a method is proposed to calculate and analyze UAV flying height, maximum level flying speed and maximum wing loading, etc. The calculation and analysis method proposed in this thesis provides basis for the design and analysis of Laser-motive UAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.