[1] Different parts of Antarctica receive different amounts of snowfall each year. In this paper we map the variations of the mean annual snow accumulation across the ice sheet. We also quantify the uncertainty in our estimates more objectively than has been possible for earlier maps. The new map is produced using observations from satellites and ground-based measurements. After a logarithmic transformation, these are combined using the geostatistical method of continuous-part universal kriging to give an estimate of the snow accumulation within each cell of a rectangular grid covering Antarctica. We also derive spatial averages over the major drainage systems of the ice sheet, along with their confidence intervals. We obtain a value of 143 ± 4 kg m À2 a À1 for the average rate of snow accumulation upon the grounded ice sheet of Antarctica.
[1] The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 ± 5.7 dB km À1 ) is somewhat lower than the value derived from radar profiles (25.3 ± 1.1 dB km À1 ). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 ± 2.2 dB km À1 . This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.
The composite roughness model is applied to bottom backscattering in the frequency range 10–100 kHz. For angles near normal incidence, the composite roughness model is replaced by the Kirchhoff approximation which gives better results. In addition, sediment volume scattering is treated, with account taken of refraction and reflection at the randomly sloping interface. In applying the model to published data it is found that sediment volume scattering is dominant in soft sediments except at small and large grazing angles. For coarse sand bottoms, roughness scattering dominates over a wide range of grazing angles. Implications for acoustic remote sensing are discussed.
Abstract. Large dune fields occupy more than 500,000 km 2 of the East Antarctic Plateau. The "megadunes", or longwavelength surface ripples, have amplitudes of only a few meters, wavelengths of a few kilometers, and parallel crests which can extend one hundred kilometers. They occur in areas characterized by low accumulation, extensively recrystallized snow, and strong scattering of the microwave part of the spectrum. Dune crests are oriented perpendicular to the regional katabatic wind direction. Snow megadunes are unlikely to be formed by simple wind transport of snow particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.