Investigations of complex nanostructured materials used in modern technologies require special experimental techniques able to provide information on the structure and electronic properties of materials with a spatial resolution down to the nanometer scale. We tried to address these needs through the combination of x-ray absorption spectroscopy (XAS) using synchrotron radiation microbeams with scanning near-field optical microscopy (SNOM) detection of the x-ray excited optical luminescence (XEOL) signal. This new instrumentation offers the possibility to carry out a selective structural analysis of the sample surface with the subwavelength spatial resolution determined by the SNOM probe aperture. In addition, the apex of the optical fiber plays the role of a topographic probe, and chemical and topographic mappings can be simultaneously recorded. Our working XAS-SNOM prototype is based on a quartz tuning-fork head mounted on a high stability nanopositioning system; a coated optical fiber tip, operating as a probe in shear-force mode; a detection system coupled with the microscope head control system; and a dedicated software/hardware setup for synchronization of the XEOL signal detection with the synchrotron beamline acquisition system. We illustrate the possibility to obtain an element-specific contrast and to perform nano-XAS experiments by detecting the Zn K and W L(3) absorption edges in luminescent ZnO and mixed ZnWO(4)-ZnO nanostructured thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.