Aims. The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z < 2.5) galaxies from their IR emission using the 24 μm band of MIPS-Spitzer. Methods. We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results. We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z > 0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z 2, massive galaxies are actively star-forming, with a median SFR 300 M yr −1 . During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions. The analysis of the SFR density and the SSFR seems to support the downsizing scenario, according to which high mass galaxies have formed their stars earlier and more rapidly than their low mass counterparts. A comparison with renditions of theoretical simulations of galaxy formation and evolution indicates that these models follow the global increase in the SSFR with redshift and predict the existence of quiescent galaxies even at z > 1.5. However, the average SSFR is systematically underpredicted by all models considered.
We present the final results from our ultra-deep spectroscopic campaign with FORS2 at the ESO/VLT for the confirmation of z ≃ 7 "z-band dropout" candidates selected from our VLT/Hawk-I imaging survey over three independent fields. In particular we report on two newly discovered galaxies at redshift ∼ 6.7 in the NTT deep field: both galaxies show a Lyα emission line with rest-frame EWs of the order 15-20Å and luminosities of 2-4×10 42 ergs −1 . We also present the results of ultra-deep observations of a sample of i-dropout galaxies, from which we set a solid upper limit on the fraction of interlopers.Out of the 20 z-dropouts observed we confirm 5 galaxies at 6.7 < z < 7.1. This is systematically below the expectations drawn on the basis of lower redshift observations: in particular there is a significant lack of objects with intermediate Lyα EWs (between 20 and 55Å). We conclude that the trend for the fraction of Lyα emission in LBGs that is constantly increasing from z∼3 to z∼6 is most probably reversed from z ∼ 6 to z∼7. Explaining the observed rapid change in the LAE fraction among the drop-out population with reionization requires a fast evolution of the neutral fraction of hydrogen in the Universe. Assuming that the Universe is completely ionized at z=6 and adopting the semi-analytical models of Dijkstra et al. (2011), we find that our data require a change of the neutral hydrogen fraction of the order ∆χ HI ∼ 0.6 in a time ∆z ∼ 1, provided that the escape fraction does not increase dramatically over the same redshift interval.
We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Nearinfrared Deep Extragalactic Legacy Survey (CANDELS) project. We combine the effort from ten different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ∼80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age < 100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for < 20 Myr sources) if nebular contribution is ignored.
We present the multiwavelength -ultraviolet to mid-infrared
We present new results from our search for z ∼ 7 galaxies from deep spectroscopic observations of candidate z-dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only 2 galaxies have robust redshift identifications, one from its Lyα emission line at z=6.65, the other from its Lyman-break, i.e. the continuum discontinuity at the Lyα wavelength consistent with a redshift 6.42, but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyα EW derived from the non detections in ultra-deep observations.Using this new data as well as previous samples, we assemble a total of 68 candidate z∼ 7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Lyα emission in z∼7 Lyman break galaxies compared to z∼ 6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.