Xrn1p of Saccharomyces cerevisiae is a major cytoplasmic RNA turnover exonuclease which is evolutionarily conserved from yeasts to mammals. Deletion of the XRN1 gene causes pleiotropic phenotypes, which have been interpreted as indirect consequences of the RNA turnover defect. By sequence comparisons, we have identified three loosely defined, common 5'-3' exonuclease motifs. The significance of motif II has been confirmed by mutant analysis with Xrn1p. The amino acid changes D206A and D208A abolish singly or in combination the exonuclease activity in vivo. These mutations show separation of function. They cause identical phenotypes to that of xrn1Delta in vegetative cells but do not exhibit the severe meiotic arrest and the spore lethality phenotype typical for the deletion. In addition, xrn1-D208A does not cause the severe reduction in meiotic popout recombination in a double mutant with dmc1 as does xrn1Delta. Biochemical analysis of the DNA binding, exonuclease, and homologous pairing activity of purified mutant enzyme demonstrated the specific loss of exonuclease activity. However, the mutant enzyme is competent to promote in vitro assembly of tubulin into microtubules. These results define a separable and specific function of Xrn1p in meiosis which appears unrelated to its RNA turnover function in vegetative cells.
X-ray and neutron diffraction studies of oriented multilayers of a highly purified fraction of isolated sarcoplasmic reticulum (SR) have previously provided the separate profile structures of the lipid bilayer and the Ca2+-ATPase molecule within the membrane profile to approximately 10-A resolution. These studies used biosynthetically deuterated SR phospholipids incorporated isomorphously into the isolated SR membranes via phospholipid transfer proteins. Time-resolved x-ray diffraction studies of these oriented SR membrane multilayers have detected significant changes in the membrane profile structure associated with phosphorylation of the Ca2+-ATPase within a single turnover of the Ca2+-transport cycle. These studies used the flash photolysis of caged ATP to effectively synchronize the ensemble of Ca2+-ATPase molecules in the multilayer, synchrotron x-radiation to provide 100-500-ms data collection times, and double-beam spectrophotometry to monitor the Ca2+-transport process directly in the oriented SR membrane multilayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.