The performance of thick GEMs (THGEMs) was compared to that of thin GEMs in two-phase Ar avalanche detectors, in view of their potential application in coherent neutrino-nucleus scattering, dark-matter search and in other rare-event experiments. The detectors comprised a 1 cm thick liquid-Ar layer followed by either a double-THGEM or a triple-GEM multiplier, operated in the saturated vapor above the liquid phase. Three types of THGEMs were studied: those made of G10 and Kevlar and that with resistive electrodes (RETHGEM). Only the G10-made THGEM showed a stable performance in two-phase Ar with gains reaching 3000. Successful operation of two-phase Ar avalanche detectors with either thin-or thick-GEM multipliers was demonstrated at low detection thresholds, of 4 and 20 primary electrons respectively. Compared to the triple-GEM the double-THGEM multiplier yielded slower anode signals; this allowed applying a pulse-shape analysis to effectively reject noise signals. Noise rates of both multipliers were evaluated in two-phase Ar; with detection thresholds of 20 electrons and applying pulseshape analysis noise levels as low as 0.007 Hz per 1 cm 2 of active area were reached.
We study the performance of two-phase avalanche detectors based on Gas Electron Multipliers (GEMs) and operated in an electron-avalanching mode in Ar and Xe. Emission, gain, energy resolution and stability characteristics of the detectors were studied. Rather high gains, reaching 5000, and stable operation for several hours were observed in the two-phase Ar avalanche detector using a triple-GEM multiplier. The signals induced by X-rays, β-particles and γ-rays were successfully recorded. Preliminary results were obtained in the two-phase Xe avalanche detector: the maximum gain of the triple-GEM in two-phase Xe and Xe+2%CH 4 was about 200. The results obtained are relevant in the field of two-phase detectors for dark matter searches, coherent neutrino scattering, PET and digital radiography.
Electron emission properties of two-phase Ar avalanche detectors are studied. The detectors investigated comprised a liquid Ar or Ar+N 2 layer followed by a multi-GEM multiplier operated in the saturated vapour at 84 K. Two components of the electron emission through the liquid-gas interface were observed: fast and slow. In Ar, the slow emission component dominated even at higher fields, reaching 2 kV/cm. In Ar+N 2 on the contrary, the fast emission component dominated at higher fields, the slow component being disappeared. This is explained by the electron backscattering effect in the gas phase. The slow component decay time constant was inversely proportional to the electric field, which is compatible with thermionic emission model. The electron emission efficiencies in two-phase Ar and Ar+N 2 were estimated to be close to each other.
We study the performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne
and Ne+H2 at temperatures in the range of 2.6-293 K. In He, at temperatures
between 62 and 293 K, the triple-GEM structures often operate at rather high
gains, exceeding 1000. There is an indication that this high gain is achieved
by Penning effect in the gas impurities released by outgassing. At lower
temperatures the gain-voltage characteristics are significantly modified
probably due to the freeze-out of impurities. In particular, the double-GEM and
single-GEM structures can operate down to 2.6 K at gains reaching only several
tens at a gas density of about 0.5 g/l; at higher densities the maximum gain
drops further. In Ne, the maximum gain also drops at cryogenic temperatures.
The gain drop in Ne at low temperatures can be reestablished in Penning
mixtures of Ne+H2: very high gains, exceeding 10000, have been obtained in
these mixtures at 50-60 K, at a density of 9.2 g/l corresponding to that of
saturated Ne vapor near 27 K. The results obtained are relevant in the fields
of two-phase He and Ne detectors for solar neutrino detection and electron
avalanching at low temperatures.Comment: 13 pages, 14 figures. Accepted for publishing in Nucl. Instr. and
Meth.
The performance of a two-phase Ar avalanche detector in a single electron counting mode was studied, with regard to potential application in coherent neutrino-nucleus scattering and dark matter search experiments. The detector comprised of a 1 cm thick liquid Ar layer and a triple-GEM multiplier operated in the saturated vapour above the liquid phase. Successful operation of the detector in single electron counting mode, in the gain range from 6000 to 40000, has for the first time been demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.