The article deals with the geometric locations of points equidistant from two spheres. In all variants of the mutual position of the spheres, the geometric places of the points are two surfaces. When the centers of the spheres coincide with the locus of points equidistant from the spheres, there will be spheres equal to the half-sum and half-difference of the diameters of the original spheres. In three variants of the relative position of the initial spheres, one of the two surfaces of the geometric places of the points is a two-sheet hyperboloid of revolution. It is obtained when: 1) the spheres intersect, 2) the spheres touch, 3) the outer surfaces of the spheres are removed from each other. In the case of equal spheres, a two-sheeted hyperboloid of revolution degenerates into a two-sheeted plane, more precisely, it is a second-order degenerate surface with a second infinitely distant branch. The spheres intersect - the second locus of the points will be the ellipsoid of revolution. Spheres touch - the second locus of points - an ellipsoid of revolution, degenerated into a straight line, more precisely into a zero-quadric of the second order - a cylindrical surface with zero radius. The outer surfaces of the spheres are distant from each other - the second locus of points will be a two-sheet hyperboloid of revolution. The small sphere is located inside the large one - two coaxial confocal ellipsoids of revolution. In all variants of the mutual position of spheres of the same diameters, the common geometrical place of equidistant points is a plane (degenerate surface of the second order) passing through the middle of the segment perpendicular to it, connecting the centers of the original spheres. The second locus of points equidistant from two spheres of the same diameter can be either an ellipsoid of revolution (if the original spheres intersect), or a straight (cylindrical surface with zero radius) connecting the centers of the original spheres when the original spheres touch each other, or a two-sheet hyperboloid of revolution (if continue to increase the distance between the centers of the original spheres).
The paper considers the geometric locus of points equidistant to two spheres of different diameters. If these spheres are concentric, the sought multitude constitutes a single surface – a sphere of diameter equal to arithmetic mean of the diameters of the given spheres. In other cases the geometric locus of points equidistant to two spheres of different diameters constitutes two surfaces. In case the spheres intersect, are tangent or distant to each other, the first of these surfaces is a two-sheet hyperboloid of revolution that degenerates into a plane in case the spheres are equal. In case the spheres intersect, the second of the surfaces is an ellipsoid of revolution that degenerates into a straight line if the spheres are tangent to each other. In the case of distant spheres, the second of the surfaces is a two-sheet hyperboloid of revolution. In case the spheres contain one another, the sough geometric locus constitutes two co-axial co-focused ellipsoids of revolution. The equations defining the mentioned surfaces are presented. The regularities in shape and location of these surfaces were studied; the formulas for the major and the minor axes of the ellipsoids and the vertices of the two-sheet hyperboloids of revolution were derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.