The Notch effector gene Hes1 is an ultradian clock exhibiting cyclic gene expression in several progenitor cells, with a period of a few hours. Because of the complexity of studying Hes1 in the endogenous setting, and the difficulty of imaging these fast oscillations in vivo, the mechanism driving oscillations has never been proven. Here, we applied a "build it to understand it" synthetic biology approach to construct simplified "hybrid" versions of the Hes1 ultradian oscillator combining synthetic and natural parts. We successfully constructed a simplified synthetic version of the Hes1 promoter matching the endogenous regulation logic. By mathematical modeling and single-cell real-time imaging, we were able to demonstrate that Hes1 is indeed able to generate stable oscillations by a delayed negative feedback loop. Moreover, we proved that introns in Hes1 contribute to the transcriptional delay but may not be strictly necessary for oscillations to occur. We also developed a novel reporter of endogenous Hes1 oscillations able to amplify the bioluminescence signal 5-fold. Our results have implications also for other ultradian oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.