We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ≤ z ≤ 1 are selected from the COSMOS 2 deg 2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R 500 . The total sample of 118 groups and clusters with z ≤ 1 spans a range in M 500 of ∼ 10 13 -10 15 M ⊙ . We find that the stellar mass fraction associated with galaxies at R 500 decreases with increasing total mass as M −0.37±0.04 500, independent of redshift. Estimating the total gas mass fraction from a recently derived, high quality scaling relation, the total baryon mass fraction (f stars+gas 500 = f stars 500 + f gas 500 ) is found to increase by ∼ 25% when M 500 increases from M = 5 × 10 13 M ⊙ to M = 7 × 10 14 M ⊙ . After consideration of a plausible contribution due to intra-cluster light (11-22% of the total stellar mass), and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of M = 5 × 10 13 M ⊙ . The discrepancy decreases towards higher total masses, such that it is 1σ at M = 7 × 10 14 M ⊙ . We discuss this result in terms of non-gravitational processes such as feedback and filamentary heating.
Although it accounts only for a small fraction of the baryonic mass, dust has a profound impact on the physical processes at play in galaxies. Thus, to understand the evolution of galaxies, it is essential not only to characterize dust properties per se, but also in relation to global galaxy properties. To do so, we derive the dust properties of galaxies in a volume limited, K-band selected sample, the Herschel Reference Survey (HRS). We gather infrared photometric data from 8 µm to 500 µm from Spitzer, WISE, IRAS, and Herschel for all of the HRS galaxies. Draine & Li (2007, ApJ, 663, 866) models are fit to the data from which the stellar contribution has been carefully removed. We find that our photometric coverage is sufficient to constrain all of the parameters of the Draine & Li models and that a strong constraint on the 20−60 µm range is mandatory to estimate the relative contribution of the photo-dissociation regions to the infrared spectral energy distribution (SED). The SED models tend to systematically underestimate the observed 500 µm flux densities, especially for low-mass systems. We provide the output parameters for all of the galaxies, i.e., the minimum intensity of the interstellar radiation field, the fraction of polycyclic aromatic hydrocarbon (PAH), the relative contribution of PDR and evolved stellar population to the dust heating, the dust mass, and the infrared luminosity. For a subsample of gas-rich galaxies, we analyze the relations between these parameters and the main integrated properties of galaxies, such as stellar mass, star formation rate, infrared luminosity, metallicity, Hα and H-band surface brightness, and the far-ultraviolet attenuation. A good correlation between the fraction of PAH and the metallicity is found, implying a weakening of the PAH emission in galaxies with low metallicities and, thus, low stellar masses. The intensity of the diffuse interstellar radiation field and the H-band and Hα surface brightnesses are correlated, suggesting that the diffuse dust component is heated by both the young stars in star-forming regions and the diffuse evolved population. We use these results to provide a new set of infrared templates calibrated with Herschel observations on nearby galaxies and a mean SED template to provide the z = 0 reference for cosmological studies. For the same purpose, we place our sample on the S FR−M * diagram. The templates are compared to the most popular infrared SED libraries, enlightening a large discrepancy between all of them in the 20−100 µm range.
Context. The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe. Until recently, however, the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows, biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A GRB V 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry, and location of the absorbing dust of these poorly-explored host galaxies, and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line and galaxy-integrated characteristics such as the host's stellar mass, luminosity, color-excess, and star-formation rate. Results. For the eight afterglows considered in this study, we report for the first time the redshift of GRB 081109 (z = 0.9787±0.0005), and the visual extinction towards GRBs 081109 (A GRB V = 3.4 +0.4 −0.3 mag) and 100621A (A GRB V = 3.8 ± 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs, there is a strong anti-correlation between the afterglow's metal-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder ( (R − K) AB ∼ 1.6 mag), more luminous ( L ∼ 0.9 L * ), and massive ( log M * [M ] ∼ 9.8) than the hosts of optically-bright events. Hence, we probe a different galaxy population, suggesting that previous host samples miss most of the massive and metal-rich members. This also indicates that the dust along the sight-line is often related to host properties, and thus probably located in the diffuse ISM or interstellar clouds and not in the immediate GRB environment. Some of the hosts in our sample, are blue, young, or of low stellar mass illustrating that even apparently non-extinguished galaxies possess very dusty sight-lines owing to a patchy dust distribution. Conclusions. The afterglows and host galaxies of the dustiest GRBs provide evidence of a complex dust geometry in star-forming galaxies. In addition, they establish a population of luminous, massive, and correspondingly chemically evolved GRB hosts. This suggests that GRBs trace the global star-formation rate better than studies based on optically selected host samples indicate, and that the previously claimed deficiency of high-mass hosts was at least partially a selection effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.