Alzheimer's Disease (AD) is a devastating neurodegenerative disorder where one of the commonly observed pathological hallmarks is extracellular deposits of the peptide amyloid-β (Aβ).
Glial cells comprise the majority of cells in the central nervous system and exhibit diverse functions including the development of persistent neuropathic pain. While earlier theories have proposed that the applied electric field specifically affects neurons, it has been demonstrated that electrical stimulation (ES) of neural tissue modulates gene expression of the glial cells. This study examines the effect of ES on the expression of eight genes related to oxidative stress and neuroprotection in cultured rodent glioma cells. Concentric bipolar electrodes under seven different ES types were used to stimulate cells for 30 min in the presence and absence of extracellular glutamate. ES consisted of rectangular pulses at 50 Hz in varying proportions of anodic and cathodic phases. Real-time reverse-transcribed quantitative polymerase chain reaction was used to determine gene expression using the ∆∆Cq method. The results demonstrate that glutamate has a significant effect on gene expression in both stimulated and non-stimulated groups. Furthermore, stimulation parameters have differential effects on gene expression, both in the presence and absence of glutamate. ES has an effect on glial cell gene expression that is dependent on waveform composition. Optimization of ES therapy for chronic pain applications can be enhanced by this understanding.
The extensive use of antibody-containing affinity columns in the purification of biologically active compounds (e.g., genetically engineered proteins) is severely hampered by the leaching of antibody (or portions thereof) from the immunoaffinity resin during elution of the target antigen. One of the major problems in this context is the combined use of reducing (i.e., thiols) and chaotropic (e.g., detergents and denaturants) agents in the elution step, which causes the disassociation of heavy and/or light chains from the immobilized antibody, thereby contaminating the resultant product. In order to overcome this problem, we have cross-linked the four antibody chains at their sites of disulfide interlinkage, thus producing a single antibody chain. To accomplish this, interchain disulfide bonds were reduced, and the resultant thiol groups were cross-linked by using bifunctional SH-specific reagents (particularly bismaleimides). Cross-linking of up to 95% of the available SH groups produced was achieved with concomitant retention of antigen-binding activity. The cross-linked antibody was immobilized onto CNBr-activated Sepharose, and the resultant column was found to be substantially more stable to harsh elution conditions than similar columns which contain the un-cross-linked antibody.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.