In this paper a fast and novel method is proposed for multi-font multi-size Kannada numeral recognition which is thinning free and without size normalization approach. The different structural feature are used for numeral recognition namely, directional density of pixels in four directions, water reservoirs, maximum profile distances, and fill hole density are used for the recognition of Kannada numerals. A Euclidian minimum distance criterion is used to find minimum distances and K-nearest neighbor classifier is used to classify the Kannada numerals by varying the size of numeral image from 16 to 50 font sizes for the 20 different font styles from NUDI and BARAHA popular word processing Kannada software. The total 1150 numeral images are tested and the overall accuracy of classification is found to be 100%. The average time taken by this method is 0.1476 seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.