A set of 109 laboratory fires in Pinus halepensis fuel beds (1 kg m–2) was used to test the effects of slope (0°, 10°, 20°, 30°) and fuel bed width (1, 2, 3 m) on fire behaviour variables such as rate of spread, fuel consumption, flame residence time, temperatures and flame geometry. The qualitative behaviour of the fires is also reported. The 20° and 30° upslope fires are pointed in shape and fire whirls moving along the fire flanks in the direction of the fire head are systematically observed in 30° upslope fires. Flame residence time increases with increasing slope angle, and both slope angle and fuel bed width affect rate of spread. The slope effects observed in 10° and 20° slope angles and in the narrowest fuel beds (1 and 2 m) are similar to those predicted by operational models. However, the observed slope effect at the 30° slope angle is underestimated by these models, in particular in 3 m-wide fuel beds. Flame temperatures correlate closely with dimensionless height and flame lengths correlate closely with fire line intensity. Mechanisms that could explain the different effects observed are suggested and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.