Electrical resistivity of soil has become one of the most important indicators of compactness and compressive resistance. In previous studies, the temperature of soil tested was always above 0 °C. However, due to the phase change of pore water, the resistivity of freezing soils is different from that of unfrozen soils. Therefore, it is necessary to clarify the influence of temperature on electrical resistivity. To achieve this goal, according to the bundle of the cylindrical capillary model, pores in soil were treated as conducting tubes, and two simple lognormal functions were introduced to describe the distribution of the conducting tubes. Based on the conductivity theory, a new model considering the temperature and the pore size distribution was presented. Results show that only a part of the conducting tubes can be treated as the effective conducting tubes, which are determined by the soil temperature. Furthermore, a small portion of the pores with the smaller size controlled the electrical resistivity of the freezing clay. In other words, the change in the electrical resistivity of freezing clay was caused mainly by the change of unfrozen water content through the decrease in temperature. Based on the experimental results conducted on clay from Northeast China, the validity of the presented model was verified. The comparison results indicate that there was a good agreement between the calculated results and the experimental results. To expand the scope of the model, more laboratory tests are suggested to conduct to verify the applicability of the model to other clays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.