SummaryRhizobia secrete specific lipo-chitooligosaccharide signals (LCOs) called Nod factors that are required for infection and nodulation of legumes. In Rhizobium sp. NGR234, the reducing N-acetyl-D-glucosamine of LCOs is substituted at C 6 with 2-O-methyl-L-fucose which can be acetylated or sulphated. We identified a flavonoid-inducible locus on the symbiotic plasmid pNGR234a that contains a new nodulation gene, noeE, which is required for the sulphation of NGR234 Nod factors (NodNGR). noeE was identified by conjugation into the closely related Rhizobium fredii strain USDA257, which produces fucosylated but non-sulphated Nod factors (NodUSDA). R. fredii transconjugants producing sulphated LCOs acquire the capacity to nodulate Calopogonium caeruleum. Furthermore, mutation of noeE (NGR⌬noeE ) abolishes the production of sulphated LCOs and prevents nodulation of Pachyrhizus tuberosus. The sulphotransferase activity linked to NoeE is specific for fucose. In contrast, the sulphotransferase NodH of Rhizobium meliloti seems to be less specific than NoeE, because its introduction into NGR⌬noeE leads to the production of a mixture of LCOs that are sulphated on C 6 of the reducing terminus and sulphated on the 2-O-methylfucose residue. Together, these findings show that noeE is a host-specificity gene which probably encodes a fucose-specific sulphotransferase.
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium liberate morphogenetic lipochitin-oligosaccharides (Nod factors) into legume rhizospheres. Nod factors, which are synthesized by the products of rhizobial nodulation (nod) genes, vary in core length as well as in the number and type of substitutions. In Rhizobium sp. NGR234, the N-acylated pentamers of N-acetyl-D-glucosamine carry an O-methylfucose group on the reducing terminus that is substituted, on a mutually exclusive basis, with either an acetyl or a sulfuryl group. A sulfotransferase encoded by noeE is required for adjunction of activated sulfate donated by 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Here we show that when expressed in NGR234 cured of its symbiotic plasmid (= ANU265) or when purified as a fusion protein (MBP-NoeE), NoeE transfers sulfate from PAPS to fucosylated lipochitin-oligosaccharides. Enzyme assays showed that sulfotransferase activity is dependent on the presence of an acyl group (stearic and vaccenic acids were tested) since no activity was detected when fucosylated oligochitins (oligomers of two to six N-acetyl-D-glucosamine units) were used as substrates. Thus, NoeE is unique in that it is the only characterized sulfotransferase that is specific for fucosylated Nod factors. It probably acts after NodA, which acylates the amino-sugar backbone.
Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are N acylated, N methylated, and mono- or biscarbamoylated, while position C-6 of the reducing extremity is fucosylated. This fucose residue is normally 2-O methylated and either sulfated or acetylated. Here we present an analysis of all acetylated NodNGR factors, which clearly shows that the acetate group may occupy position C-3 or C-4 of the fucose moiety. Disruption of the flavonoid-inducible nolL gene, which is preceded by anod box, results in the synthesis of NodNGR factors that lack the 3-O- or 4-O-acetate groups. Interestingly, the nodulation capacity of the mutant NGRΩnolL is not impaired, whereas introduction of thenod box::nolL construct into the related strain Rhizobium fredii USDA257 extends the host range of this bacterium to Calopogonium caeruleum,Leucaena leucocephala, and Lotus halophilus. Nod factors produced by a USDA257(pnolL) transconjugant were also acetylated. The nodbox::nolL construct was also introduced into ANU265 (NGR234 cured of its symbiotic plasmid), along with extra copies of the nodD1 gene. When permeabilized, these cells possessed acetyltransferase activity, although crude extracts did not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.