Infectious pancreatic necrosis (IPN) is a viral disease currently presenting a major problem in the production of Atlantic salmon (Salmon salar). IPN can cause significant mortality to salmon fry within freshwater hatcheries and to smolts following transfer to seawater, although challenged populations show clear genetic variation in resistance. To determine whether this genetic variation includes loci of major effect, a genomewide quantitative trait loci (QTL) scan was performed within 10 full-sib families that had received a natural seawater IPN challenge. To utilize the large difference between Atlantic salmon male and female recombination rates, a two-stage mapping strategy was employed. Initially, a sire-based QTL analysis was used to detect linkage groups with significant effects on IPN resistance, using two to three microsatellite markers per linkage group. A dam-based analysis with additional markers was then used to confirm and position any detected QTL. Two genomewide significant QTL and one suggestive QTL were detected in the genome scan. The most significant QTL was mapped to linkage group 21 and was significant at the genomewide level in both the sire and the dam-based analyses. The identified QTL can be applied in marker-assisted selection programs to improve the resistance of salmon to IPN and reduce disease-related mortality.
BackgroundThe genetic architecture of complex traits in farmed animal populations is of interest from a scientific and practical perspective. The use of genetic markers to predict the genetic merit (breeding values) of individuals is commonplace in modern farm animal breeding schemes. Recently, high density SNP arrays have become available for Atlantic salmon, which facilitates genomic prediction and association studies using genome-wide markers and economically important traits. The aims of this study were (i) to use a high density SNP array to investigate the genetic architecture of weight and length in juvenile Atlantic salmon; (ii) to assess the utility of genomic prediction for these traits, including testing different marker densities; (iii) to identify potential candidate genes underpinning variation in early growth.ResultsA pedigreed population of farmed Atlantic salmon (n = 622) were measured for weight and length traits at one year of age, and genotyped for 111,908 segregating SNP markers using a high density SNP array. The heritability of both traits was estimated using pedigree and genomic relationship matrices, and was comparable at around 0.5 and 0.6 respectively. The results of the GWA analysis pointed to a polygenic genetic architecture, with no SNPs surpassing the genome-wide significance threshold, and one SNP associated with length at the chromosome-wide level. SNPs surpassing an arbitrary threshold of significance (P < 0.005, ~ top 0.5 % of markers) were aligned to an Atlantic salmon reference transcriptome, identifying 109 SNPs in transcribed regions that were annotated by alignment to human, mouse and zebrafish protein databases. Prediction of breeding values was more accurate when applying genomic (GBLUP) than pedigree (PBLUP) relationship matrices (accuracy ~ 0.7 and 0.58 respectively) and 5,000 SNPs were sufficient for obtaining this accuracy increase over PBLUP in this specific population.ConclusionsThe high density SNP array can effectively capture the additive genetic variation in complex traits. However, the traits of weight and length both appear to be very polygenic with only one SNP surpassing the chromosome-wide threshold. Genomic prediction using the array is effective, leading to an improvement in accuracy compared to pedigree methods, and this improvement can be achieved with only a small subset of the markers in this population. The results have practical relevance for genomic selection in salmon and may also provide insight into variation in the identified genes underpinning body growth and development in salmonid species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2117-9) contains supplementary material, which is available to authorized users.
Background Sea lice have significant negative economic and welfare impacts on marine Atlantic salmon farming. Since host resistance to sea lice has a substantial genetic component, selective breeding can contribute to control of lice. Genomic selection uses genome-wide marker information to predict breeding values, and can achieve markedly higher accuracy than pedigree-based methods. Our aim was to assess the genetic architecture of host resistance to sea lice, and test the utility of genomic prediction of breeding values. Individual lice counts were measured in challenge experiments using two large Atlantic salmon post-smolt populations from a commercial breeding programme, which had genotypes for ~33 K single nucleotide polymorphisms (SNPs). The specific objectives were to: (i) estimate the heritability of host resistance; (ii) assess its genetic architecture by performing a genome-wide association study (GWAS); (iii) assess the accuracy of predicted breeding values using varying SNP densities (0.5 to 33 K) and compare it to that of pedigree-based prediction; and (iv) evaluate the accuracy of prediction in closely and distantly related animals.ResultsHeritability of host resistance was significant (0.22 to 0.33) in both populations using either pedigree or genomic relationship matrices. The GWAS suggested that lice resistance is a polygenic trait, and no genome-wide significant quantitative trait loci were identified. Based on cross-validation analysis, genomic predictions were more accurate than pedigree-based predictions for both populations. Although prediction accuracies were highest when closely-related animals were used in the training and validation sets, the benefit of having genomic-versus pedigree-based predictions within a population increased as the relationships between training and validation sets decreased. Prediction accuracy reached an asymptote with a SNP density of ~5 K within populations, although higher SNP density was advantageous for cross-population prediction.ConclusionsHost resistance to sea lice in farmed Atlantic salmon has a significant genetic component. Phenotypes relating to host resistance can be predicted with moderate to high accuracy within populations, with a major advantage of genomic over pedigree-based methods, even at relatively sparse SNP densities. Prediction accuracies across populations were low, but improved with higher marker densities. Genomic selection can contribute to lice control in salmon farming.Electronic supplementary materialThe online version of this article (doi:10.1186/s12711-016-0226-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.