Variance Inflation Factors (VIFs) are reexamined as conditioning diagnostics for models with intercept, with and without centering regressors to their means as oft debated. Conventional VIFs, both centered and uncentered, are flawed. To rectify matters, two types of orthogonality are noted: vector-space orthogonality and uncorrelated centered regressors. The key to our approach lies in feasible Reference models encoding orthogonalities of these types. For models with intercept it is found that (i) uncentered VIFs are not ratios of variances as claimed, owing to infeasible Reference models; (ii) instead they supply informative angles between subspaces of regressors; (iii) centered VIFs are incomplete if not misleading, masking collinearity of regressors with the intercept; and (iv) variance deflation may occur, where ill-conditioned data yield smaller variances than their orthogonal surrogates. Conventional VIFs have all regressors linked, or none, often untenable in practice. Beyond these, our models enable the unlinking of regressors that can be unlinked, while preserving dependence among those intrinsically linked. Moreover, known collinearity indices are extended to encompass angles between subspaces of regressors. To reaccess ill-conditioned data, we consider case studies ranging from elementary examples to data from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.