Approximate string matching is an important operation in information systems because an input string is often an inexact match to the strings already stored. Commonly known accurate methods are computationally expensive as they compare the input string to every entry in the stored dictionary. This paper describes a two‐stage process. The first uses a very compact n‐gram table to preselect sets of roughly similar strings. The second stage compares these with the input string using an accurate method to give an accurately matched set of strings. A new similarity measure based on the Levenshtein metric is defined for this comparison. The resulting method is both computationally fast and storage‐efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.