The smoothed particle hydrodynamics (SPH) method was employed to simulate the heat transfer process in porous media at the pore scale. The effective thermal conductivity of a porous medium can be predicted through a simulation experiment of SPH. The accuracy of the SPH simulation experiment was verified by comparing the predicted values with reference values for ideal homogeneous media and multiphase layered media. 3D simulation experiments were implemented in granular media generated by the PFC method. Based on the SPH framework, a concise method was proposed to produce unsaturated media by simulating the wetting process in dry media. This approach approximates the formation of liquid bridges and water films on granules. Through simulation experiments, the empirical formula of the variation in thermal conductivity with the degree of saturation was tested. The results showed that the reciprocal of the normalized thermal conductivity and the reciprocal of the saturation are linearly related, which is in line with the empirical formula proposed by Cote and Konrad.
The main purpose of this study is to experimentally investigate the effect of temperature on the seepage transport of suspended particles (SP) with a median diameter of 10–47 μm in a porous medium for various seepage velocities. The results show that the rise of temperature accelerates the irregular movements of SPs in the porous medium and reduces their migration velocity. As a result, the pore volume corresponding to the peak value of the breakthrough curves is apparently delayed, and the peak value in the effluent is decreased. The migration velocity of SPs decreases with increasing particle size, regardless of the Darcy velocity and temperature. The longitudinal dispersivity of SPs decreases slightly with increasing temperature and then remains almost unchanged. Larger particles experience more irregular movements induced by the limit of pore size, which leads to a larger dispersivity. The deposition coefficient increases with increasing temperature, especially in the case of a high seepage velocity, and then tends to be stable. The deposition coefficient for large‐sized particles is higher than that for small‐sized particles, which can be attributed to the restriction of large‐sized particles by the narrow pores in the porous medium. The recovery rate decreases slightly with the increase of temperature until a critical value is reached, beyond which it remains almost unchanged. In summary, temperature is a significant factor affecting the transport and deposition of SPs in the porous medium, and the transport parameters such as particle velocity, dispersivity, and deposition coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.