Testing is an important part of every software development process on which companies devote considerable time and effort. The burgeoning web applications and their proliferating economic significance in the society made the area of web application testing an area of acute importance. The web applications generally tend to take faster and quicker release cycles making their testing very challenging. The main issues in testing are cost efficiency and bug detection efficiency. Coverage-based testing is the process of ensuring exercise of specific program elements. Coverage measurement helps determine the -thoroughness‖ of testing achieved. An avalanche of tools, techniques, frameworks came into existence to ascertain the quality of web applications. A comparative study of some of the prominent tools, techniques and models for web application testing is presented. This work highlights the current research directions of some of the web application testing techniques.
Metastatic Breast Cancer (MBC) is one of the primary causes of cancer-related deaths in women. Despite several limitations, histopathological information about the malignancy is used for the classification of cancer. The objective of our study is to develop a non-invasive breast cancer classification system for the diagnosis of cancer metastases. The anaconda—Jupyter notebook is used to develop various python programming modules for text mining, data processing, and Machine Learning (ML) methods. Utilizing classification model cross-validation criteria, including accuracy, AUC, and ROC, the prediction performance of the ML models is assessed. Welch Unpaired t-test was used to ascertain the statistical significance of the datasets. Text mining framework from the Electronic Medical Records (EMR) made it easier to separate the blood profile data and identify MBC patients. Monocytes revealed a noticeable mean difference between MBC patients as compared to healthy individuals. The accuracy of ML models was dramatically improved by removing outliers from the blood profile data. A Decision Tree (DT) classifier displayed an accuracy of 83% with an AUC of 0.87. Next, we deployed DT classifiers using Flask to create a web application for robust diagnosis of MBC patients. Taken together, we conclude that ML models based on blood profile data may assist physicians in selecting intensive-care MBC patients to enhance the overall survival outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.