Due to the increasing usage of multimedia and storage devices accessible, searching for large image databases has become imperative. Furthermore, the handiness of high-speed internet has escalated the exchange of images by users enormously. Content-Based Image Retrieval is proposed in this work, taking features based on Exact Legendre Moments, HVS color quantization with dc coefficient and statistical properties such as variance, mean, and skew of Conjugate Symmetric Sequency Complex Hadamard Transform (CS-SCHT). In most of the machine learning tasks, the quality of the learning process depends on dimensionality. High dimensional datasets can influence the classification outcome and training time. To overcome this problem, we use DE (Differential Evolution) to generate the optimal feature subsets. The features scaled by weights derived from the firefly algorithm, which fed to Multi-Class SVM. The fitness function taken for the firefly algorithm is the classification error of SVM. By minimizing fitness function, optimum weights are obtained. When these optimal weights are applied to SVM, the proposed algorithm exhibits better precision, recall, and accuracy when compared to some of the existing algorithms in the literature.
In the last few years, Content-Based Image Retrieval (CBIR) has received wide attention. Compared to text-based image retrieval contents of the image are more in information for efficient retrieval by Content-Based Image Retrieval. The single feature cannot be applied to all the images and provides lower performance. In this paper, we have put forward a proposal on an image retrieval using multi-feature fusion. The concept of multi-resolution has been exploited with the help of a wavelet transform. This method combines Local Binary Pattern (LBP) with Fast and Accurate Exponent Fourier Moments (FAEFM’s) with the wavelet decomposition of an image using multiple resolutions. In order to extract the feature of texture from image, LBP codes of Discrete Wavelet Transform (DWT), the image coefficients are estimated followed by the computation of Fast and Accurate Exponent Fourier Moments to these LBP codes so as to extract features of shape to construct the required feature vector. These constructed vectors aid us in exactly finding out and retrieving visually similar images from existing databases. The benchmark databases Corel-1k and Olivia 2688 are used to test the proposed method. The proposed method achieves 99.99% of precision and 93.15% of recall on Corel-1k database and 99.99% of precision and recall of 93.63% on Olivia-2688 database, which are higher than the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.