Nowadays, spam deliveries represent a major problem to benefit from the wide range of Internet-based communication forms. Despite the existence of different well-known intelligent techniques for fighting spam, only some specific implementations of Naïve Bayes algorithm are finally used in real environments for performance reasons. As long as some of these algorithms suffer from a large number of false positive errors, in this work we propose a rough set postprocessing approach able to significantly improve their accuracy. In order to demonstrate the advantages of the proposed method, we carried out a straightforward study based on a publicly available standard corpus (SpamAssassin), which compares the performance of previously successful well-known antispam classifiers (i.e., Support Vector Machines, AdaBoost, Flexible Bayes, and Naïve Bayes) with and without the application of our developed technique. Results clearly evidence the suitability of our rough set postprocessing approach for increasing the accuracy of previous successful antispam classifiers when working in real scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.