We report on the creation of a two-dimensional Bose-Einstein condensate of cesium atoms in a gravito-optical surface trap. The condensate is produced a few microm above a dielectric surface on an evanescent-wave atom mirror. After evaporative cooling by all-optical means, expansion measurements for the tightly confined vertical motion show energies well below the vibrational energy quantum. The presence of a condensate is observed in two independent ways by a magnetically induced collapse at negative scattering length and by measurements of the horizontal expansion.
A dense gas of cesium atoms at the crossover to two dimensions is prepared in a highly anisotropic surface trap that is realized with two evanescent light waves. Temperatures as low as 100 nK are reached with 20,000 atoms at a phase-space density close to 0.1. The lowest quantum state in the tightly confined direction is populated by more than 60%. The system provides atoms at a mean distance from the surface as low as 1 microm, and offers intriguing prospects for future experiments on degenerate quantum gases in two dimensions.
An optical microtrap is realized on a dielectric surface by crossing a tightly focused laser beam with an horizontal evanescent-wave atom mirror. The nondissipative trap is loaded with ∼10 5 cesium atoms through elastic collisions from a cold reservoir provided by a large-volume optical surface trap. With an observed 300-fold local increase of the atomic number density approaching 10 14 cm −3 , unprecedented conditions of cold atoms close to a surface are realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.