The purpose of this study was to develop a springboard model that could be used to predict, in future diving simulation studies, the vertical interaction forces between a diver’s feet and the board during the time of board depression and recoil. To achieve this, the characteristic parameters (effective mass, stiffness, and damping) for a Duraflex springboard were first examined using a finite element approach. The finite element results indicated that a linear model, consisting of a lumped mass and spring, could be used to simulate the actual dynamic behavior of a springboard system. The effects of damping on the board’s motion were found to be negligible and could safely be ignored. The values for the model’s parameters (board stiffness and effective board mass) were determined empirically and are reported in this paper.
The characteristic modeling parameters (spring stiffness and effective mass ratio) were determined experimentally for a Maxiflex “B” board. The results indicated that the Maxiflex “B” board was substantially less stiff than a Duraflex board. Most of this decrease in stiffness is a result of the added second taper in the Maxiflex “B” board. Calculations, based on theory, revealed that the perforations in the Maxiflex “B” board reduced the local stiffness over the end region of the board by an additional 10%. As a result of its greater compliancy, the Maxiflex board also had an effective mass ratio that was greater than that of the Duraflex. It was clear from these experiments that the acknowledged superiority of the Maxiflex “B” board over the Duraflex could be attributed directly to the increased compliancy found in the Maxiflex “B” board.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.