One of the most exciting areas of computer science right now is brain-computer interface (BCI) research. A conduit for data flow between both the brain as well as an electronic device is the brain-computer interface (BCI). Researchers in several disciplines have benefited from the advancements made possible by brain-computer interfaces. Primary fields of study include healthcare and neuroergonomics. Brain signals could be used in a variety of ways to improve healthcare at every stage, from diagnosis to rehabilitation to eventual restoration. In this research, we demonstrate how to classify EEG signals of brain waves using machine learning algorithms for predicting mental health states. The XGBoost algorithm's results have an accuracy of 99.62%, which is higher than that of any other study of its kind and the best result to date for diagnosing people's mental states from their EEG signals. This discovery will aid in taking efforts [1] to predict mental state using EEG signals to the next level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.