This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Lipopolysaccharides (LPS) from Gram-negative bacteria prime human polymorphonuclear neutrophils (PMNs) via multicomponent receptor cluster including CD14 and MD-2·TLR4 for the enhanced release of reactive oxygen species (ROS) were triggered by bacterial derived peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP). In this study, we investigated the impact of CD14 on LPS-induced priming of human PMNs for fMLP-triggered ROS generation (respiratory or oxidative) burst. Monoclonal antibodies against human CD14 (mAbs) as well as isotype-matched IgG2a did not influence significantly fMLP-triggered ROS production from LPS-unprimed PMNs. Anti-CD14 mAbs (clone UCHM-1) attenuated LPS-induced priming of PMNs as it had been mirrored by fMLP-triggered decrease of ROS production. Similar priming activity of S-LPS or Re-LPS from Escherichia coli for fMLP-triggered ROS release from PMNs was found. Obtained results suggest that glycosylphosphatidylinositol-anchored CD14 is the key player in LPS-induced PMN priming for fMLP-triggered ROS production. We believe that blockade of CD14 on the cell surface and clinical use of anti-CD14 mAbs or their Fab fragments may diminish the production of ROS and improve outcomes during cardiovascular diseases manifested by LPS-induced inflammation.
By using the fMLP-induced respiratory burst approach, the involvement of Toll-like receptor 4 (TLR4) in human neutrophil priming by S- or Re-glycoforms of endotoxin from Escherichia coli has been elucidated. The priming effect of Re-glycoform is more pronounced than that of the S-glycoform. Unexpectedly, fMLP-triggered generation of reactive oxygen species (ROS) by endotoxin primed neutrophils was amplified by preincubation of the cells with anti-TLR4 (HTA125) antibodies or with isotype-matched immunoglobulin IgG2a. The most significant finding of our study is that neutrophils exposed to anti-TLR4 antibodies retain their ability to distinguish between S- or Re-glycoforms being primed, respectively. Moreover, differentiated effect of HTA125 antibodies on functional responses of neutrophils during their priming and fMLP stimulation was revealed. Taking these results into consideration, it is reasonable to assume that there is a contribution of Fcγ receptors to fMLP-induced ROS generation by neutrophils preincubated with HTA125 or IgG2a and primed by endotoxins.
The dynamics of antagonistic potency of lipopolysaccharide (LPS) isolated from Rhodobacter capsulatus PG on the synthesis of proinflammatory (TNF-α, IL-1β, IL-8, IL-6, IFN-γ) and antiinflammatory (IL-10, IL-1Ra) cytokines induced by highly stimulatory endotoxins from Escherichia coli or Salmonella enterica have been studied. Using human whole blood, we have shown that R. capsulatus PG LPS inhibited most pronouncedly the endotoxin-induced synthesis of TNF-α, IL-1β, IL-8, and IL-6 during the first 6 h after endotoxin challenge. Similarly, the endotoxin-induced release of IFN-γ was abolished by R. capsulatus PG LPS as well (24 h). In contrast to the above-mentioned cytokines, the relatively weak antagonistic activity of R. capsulatus PG LPS against endotoxin-triggered production of IL-6 and IL-8 was revealed. Since R. capsulatus PG LPS displays more potent antagonistic activity against deleterious effects of S. enterica LPS than those of E. coli LPS in the cases of such cytokines as IL-1β (6 and 24 h), IL-6 and IL-8 (4 h), we conclude that the effectiveness of protective action of antagonist is mostly determined by the primary lipid A structure of the employed agonist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.