The article discusses the optimization of the control process of an unmanned vehicle. Currently, there is an active development and use of unmanned vehicles. There is a practice of using unmanned shuttles in closed areas (conferences, forums, etc.). The use of cars with automated control in urban conditions and on rough terrain is being tested. In this regard, it is important to develop control algorithms that allow solving problems of car control in real time under the influence of disturbances and the presence of obstacles. With the development of technology and an increase in computing power, it becomes possible to use optimal control algorithms that allow you to achieve better results when the terminal conditions are met, minimizing energy costs. This paper shows the solution of the problem of optimal control of an unmanned vehicle in the presence of a penalty function, measurement noise and disturbances from incomplete data using the separation principle. The problem of optimal control in a deterministic and stochastic setting is solved using an algorithm with a predictive model with a generalized work functional. The effectiveness of applying the Kalman filter is shown depending on the different intensity of measurement noise and different vehicle speeds. The results of numerical modeling are presented, showing the possibility of using the proposed algorithm to control an unmanned vehicle under various initial and final conditions. The developed algorithm has been successfully applied to bypass a moving object.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.