Prelaminitic metabolic syndrome in apparently healthy ponies is comparable to metabolic syndromes in humans and is the first such set of risk factors to be supported by data in equids. Prelaminitic metabolic syndrome identifies ponies requiring special management, such as avoiding high starch intake that exacerbates insulin resistance.
Insulin resistance is considered a risk factor in obesity, laminitis, exertional rhabdomyolysis, and osteochondrosis. The objective was to use the minimal model to estimate glucose effectiveness (Sg) and insulin sensitivity (Si) in nonobese to obese horses initially adapted to forage only, then adapted to forage plus supplements rich in starch and sugar (SS) or fiber and fat (FF). Ten Thoroughbred geldings, with BCS of 5 (nonobese), 6 (moderately obese), and 7 to 8 (obese), were adapted to pasture and hay, allocated to two groups, and fed SS or FF in a switch-back design with 8 wk of adaptation. Modified frequent-sampling i.v. glucose tolerance tests were applied after adaptation to forage, SS, and FF. For the tolerance tests, horses were kept in stalls overnight and provided hay, and venous catheters were placed the next morning. Baseline samples were collected, 0.3 g of glucose/kg of BW was given i.v., and blood was sampled at 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, and 19 min. At 20 min, 30 mU of insulin/kg of BW was given, followed by sampling at 22, 23, 24, 25, 27, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 150, and 180 min. Plasma was analyzed for glucose and insulin, and Si, Sg, acute insulin response to glucose, and the disposition index were calculated. Normality was tested using the Shapiro-Wilk statistic. Body condition effects were analyzed using a mixed model with repeated measures. Diet effects were analyzed using a Wilcoxon signed rank test. The Sg was higher in obese than nonobese (P = 0.003) and moderately obese (P = 0.007) horses; Si was lower in obese than nonobese (P = 0.008) horses, and acute insulin response to glucose was higher in obese than nonobese (P = 0.039) horses. Effects of diet were likely confounded by body condition, but horses had lower Si (P = 0.066) when fed SS compared with FF, especially when nonobese. In conclusion, the minimal model effectively estimated Sg, Si, acute insulin response to glucose, and disposition index in horses. Obese geldings were insulin-resistant and seemed to rely primarily on Sg for glucose disposal. Feeding a diet rich in sugar and starch decreased insulin sensitivity of horses. Maintenance of body condition and avoidance of grain-based meals rich in sugar and starch would be beneficial to decrease the risk of developing insulin resistance and associated metabolic syndromes in horses, especially for horses at risk for these syndromes.
Path analysis and logistic regression were used to model direct and indirect relationships among clinical periparturient (within 30 d after calving) retained placenta, metritis, veterinary-assisted dystocia, uncomplicated and complicated ketosis, left displaced abomasum, parturient paresis, mastitis, and estimated nutrient intakes (protein, calcium, phosphorus, energy; coded into terciles) in the last 3 wk of the dry period. Data were from 1,374 multiparous Holstein lactations for calvings from March 1981 through February 1982 in 31 commercial herds in central New York. Periparturient disorders occurred as a complex. Odds ratios for the multiplicative effects of parturient paresis on incidence of veterinary-assisted dystocia, retained placenta, complicated ketosis, and clinical mastitis were 7.2, 4.0, 23.6, and 5.4, respectively. Reproductive disorders were interrelated. Retained placenta, left displaced abomasum, and parturient paresis directly increased risk of complicated ketosis (odds ratios were 16.4, 53.5, and 23.6, respectively). Higher terciles of estimated energy intake in the last 3 wk of the dry period decreased risk of veterinary-assisted dystocia and left displaced abomasum, while higher terciles of estimated protein intake decreased risk of retained placenta and uncomplicated ketosis. Estimated nutrient intakes were directly related to subsequent metabolic disorders and directly and indirectly related (mediated by metabolic disorders) to reproductive disorders. The study suggests that feeding higher intakes (relative to National Research Council recommendations) of protein and energy in the last 3 week of the dry period may reduce the incidence of metabolic and reproductive disorders. Exact recommendations as to the amounts and types of feed cannot be made from our results.
Proxies for screening SI and pancreatic beta-cell responsiveness in horses from this study compared favorably with proxies used effectively for humans. Combined use of RISQI and MIRG will enable differentiation between compensated and uncompensated insulin resistance. The sample size of our study allowed for determination of sound reference range values and quintiles for healthy horses.
Insulin resistance has been suggested to increase the risk of certain diseases, including osteochondrosis and laminitis. Our objective was to evaluate the effect of adaptation to high-glycemic meals on glucose-insulin regulation in healthy Thoroughbred weanlings. Twelve Thoroughbred foals were raised on pasture and supplemented twice daily with a feed high in either sugar and starch (SS; 49% nonstructural carbohydrates, 21% NDF, 3% crude fat on a DM basis) or fat and fiber (FF; 12% nonstructural carbohydrates, 44% NDF, 10% crude fat on a DM basis). As weanlings (age 199 +/- 5 d; BW 274 +/- 5 kg) the subjects underwent a modified frequently sampled i.v. glucose tolerance test. A series of 39 blood samples was collected from -60 to 360 min, with a glucose bolus of 300 mg/kg BW injected at 0 min and an insulin bolus of 1.5 mIU/kg BW at 20 min. All samples were analyzed for glucose and insulin, and basal samples also were analyzed for plasma cortisol, triglyceride, and IGF-I. The minimal model of glucose and insulin dynamics was used to determine insulin sensitivity (SI), glucose effectiveness, acute insulin response to glucose (AIRg), and disposition index (DI). Insulin sensitivity was 37% less (P = 0.007) in weanlings fed SS than in those fed FF; however, DI did not differ (P = 0.65) between diets because AIRg tended to be negatively correlated with SI (r = -0.55; P = 0.067). This finding indicates that the SI decrease was compensated by AIRg in the weanlings adapted to SS. This compensation was further demonstrated by greater insulin concentrations in SS-adapted weanlings compared with FF-adapted weanlings at 11 of 36 sample points (P< 0.055) and greater (P = 0.040) total area under the insulin curve in SS than in FF weanlings. Plasma cortisol and triglycerides did not differ between dietary groups, but IGF-I was greater (P = 0.001) in SS weanlings. Despite appearing healthy, horses adapted to high-glycemic feeds may exhibit changes in altered insulin sensitivity and compensation that increase the risk of diseases involving insulin resistance. These changes seem to be partially amenable to dietary management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.