Materials showing reversible resistance switching between high-resistance state and low-resistance state at room temperature are attractive for today’s semiconductor technology. In this letter, the reproducible hysteresis and resistive switching characteristics of metal-CuxO-metal (M-CuxO-M) heterostructures driven by low voltages are demonstrated. The fabrication of the M-CuxO-M heterostructures is fully compatible with the standard complementary metal-oxide semiconductor process. The hysteresis and resistive switching behavior are discussed. The good retention characteristics are exhibited in the M-CuxO-M heterostructures by the accurate controlling of the preparation parameters.
Materials showing reversible resistance switching between high-resistance state and low-resistance state at room temperature are attractive for today’s semiconductor technology. In this letter, the improvement of reproducible hysteresis and resistive switching characteristics of metal-La0.7Ca0.3MnO3-metal (M-LCMO-M) heterostructures is demonstrated. The fabrication of the M-LCMO-M heterostructures is compatible with the standard complementary metal-oxide semiconductor process. The effect of oxygen annealing on the improvement of the hysteresis and resistive switching is discussed. The good retention characteristics are exhibited in the M-LCMO-M heterostructures by the accurate controlling of the preparation parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.