Palaeoecological analyses of Falkland Island peat profiles have largely been confined to pollen analyses. In order to improve understanding of long-term Falkland Island peat development processes, the plant macrofossil and stable isotope stratigraphy of an 11,550 year Falkland Island Cortaderia pilosa ('whitegrass') peat profile was investigated. The peatland developed into an acid, whitegrass peatland via a poor fen stage. Macrofossil charcoal indicate that local fires have frequently occurred throughout the development of the peatland. Raman spectroscopy analyses indicate changes in the intensity of burning which are likely to be related to changes in fuel types, abundance of fine fuels due to reduced evapotranspiration/higher rainfall (under weaker Southern Westerly Winds), peat moisture and human disturbance. Stable isotope and thermogravimetric analyses were used to identify a period of enhanced decomposition of the peat matrices dating from ~7020 cal yr BP, which possibly reflects increasing strength of the Southern Westerly winds. The application of Raman spectroscopy and thermogravimetric analyses to the Falkland Island peat profile identified changes in fire intensity and decomposition which were not detectable using the techniques of macrofossil charcoal and plant macrofossil analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.