ABSTRACT. The study discusses development of a new daily gridded rainfall data set (IMD4) at a high spatial resolution (0.25° × 0.25°, latitude × longitude) covering a longer period of 110 years (1901-2010) over the Indian main land. A comparison of IMD4 with 4 other existing daily gridded rainfall data sets of different spatial resolutions and time periods has also been discussed. For preparing the new gridded data, daily rainfall records from 6955 rain gauge stations in India were used, highest number of stations used by any studies so far for such a purpose. The gridded data set was developed after making quality control of basic rain-gauge stations. The comparison of IMD4 with other data sets suggested that the climatological and variability features of rainfall over India derived from IMD4 were comparable with the existing gridded daily rainfall data sets. In addition, the spatial rainfall distribution like heavy rainfall areas in the orographic regions of the west coast and over northeast, low rainfall in the lee ward side of the Western Ghats etc. were more realistic and better presented in IMD4 due to its higher spatial resolution and to the higher density of rainfall stations used for its development.
trends in the frequency of the various categories of DR events during the total period and its two halves differed from the region to the region. The trend analysis revealed increased disaster potential for instant flooding over SCI and NCI during the recent years due to significant increasing trends in the frequency (areal coverage) and intensity of the HR and VHR events during the recent half of the data period. However, there is increased disaster potential over NEI and WC due to the increasing trends in the intensity of the rainfall events. There is strong association between the LPS days and the DR events in both the spatial and temporal scales. In all the four regions, the contributions to the total MR events by the LPS days were nearly equal. On the other hand, there was relatively large regional difference in the number of combined HR and VHR events associated with LPS days particularly that associated with monsoon depression (LPS stronger than monsoon depression) days. The possible reasons for the same have also been discussed. The increasing trend in the monsoon low (low pressure) days post 1970s is the primary reason for the observed significant increasing trends in the HR and VHR events over SCI and NCI and decreasing trend in HR events over NEI during the recent half . This is in spite of the decreasing trend in the MD days.
Following the launch of the Global Precipitation Measurement (GPM) Core Observatory, two advanced high resolution multi-satellite precipitation products namely, Integrated Multi-satellitE Retrievals for GPM (IMERG) and Global Satellite Mapping of Precipitation (GSMaP) version 6 are released. A critical evaluation of these newly released precipitation data sets is very important for both the end users and data developers. This study provides a comprehensive assessment of IMERG research product and GSMaP estimates over India at a daily scale for the southwest monsoon season (June to September 2014). The GPM-based precipitation products are inter-compared with widely used TRMM Multisatellite Precipitation Analysis (TMPA), and gauge-based observations over India. Results show that the IMERG estimates represent the mean monsoon rainfall and its variability more realistically than the gauge-adjusted TMPA and GSMaP data. However, GSMaP has relatively smaller root-mean-square error than IMERG and TMPA, especially over the low mean rainfall regimes and along the west coast of India. An entropy-based approach is employed to evaluate the distributions of the selected precipitation products. The results indicate that the distribution of precipitation in IMERG and GSMaP has been improved markedly, especially for low precipitation rates. IMERG shows a clear improvement in missed and false precipitation bias over India. However, all the three satellite-based rainfall estimates show exceptionally smaller correlation coefficient, larger RMSE, larger negative total bias and hit bias over the northeast India where precipitation is dominated by orographic effects. Similarly, the three satellite-based estimates show larger false precipitation over the southeast peninsular India which is a rain-shadow region. The categorical verification confirms that these satellite-based rainfall estimates have difficulties in detection of rain over the southeast peninsula and northeast India. These preliminary results need to be confirmed in other monsoon seasons in future studies when the fully GPM-based IMERG retrospectively processed data prior to 2014 are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.