In the present investigation, we report the transformation of alpha-LiVOPO 4 to alpha-Li 3V 2(PO 4) 3, leading to an enhancement of capacity. The alpha-LiVOPO 4 sample was synthesized by a sol-gel method, followed by sintering at 550-650 degrees C in a flow of 5% H 2/Ar. The structural transformation of a triclinic alpha-LiVOPO 4 structure to a monoclinic alpha-Li 3V 2(PO 4) 3 structure was observed at higher sintering temperatures (700-800 degrees C in a flow of 5% H 2/Ar). The alpha-Li 3V 2(PO 4) 3 phase was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermal gravimetric analysis, and X-ray absorption near edge spectrum (XANES) techniques. The valence shift of vanadium ions from +4 to +3 states was observed using in situ XANES experiments at V K-edge. The structural transformation is ascertained by the shape changes in pre-edge and near edge area of X-ray absorption spectrum. It was observed that the capacity was enhanced from 140 mAh/g to 164 mAh/g via structural transformation process of LiVOPO 4 to Li 3V 2(PO 4) 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.