a b s t r a c tA total of 227 Staphylococcus aureus colonies, isolated from 54 samples of raw milk and dairy products of bovine, ovine, caprine and bubaline origin were tested for the presence of genes coding for staphylococcal enterotoxins (SEs/SEls) and for methicillin resistance. Ninety-three colonies, from 31 of the 54 samples (57.4%) and from 18 (69.2%) of the 26 farms of origin tested positive for SEs/SEls genes. Most isolates harboured more than one toxin gene and 15 different toxinotypes were recorded. The most frequent were "sec" gene alone (28.6%), "sea, sed, ser, selj" (20%), "seg, sei" and "seh" (8.6%). The 77 colonies harbouring "classical enterotoxins" genes (sea-sed) were further tested for enterotoxin production, which was assessed for 59.2% of the colonies. Three methicillin-resistant S. aureus (MRSA) isolates were detected in three different ovine milk/dairy product samples (1.3%). All isolates belonged to spa type t127, sequence type 1, clonal complex 1, SCCmec type IVa.
Staphylococcus aureus is involved in a wide variety of diseases in humans and animals, and it is considered one of the most significant etiological agents of intramammary infection in dairy ruminants, causing both clinical and subclinical infections. In this study, the intra-farm prevalence and circulation of methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) were investigated on an Italian dairy sheep farm previously identified as MRSA-positive by testing bulk tank milk (first isolation in 2012). Human samples (nasal swabs, hand skin samples, and oropharyngeal swabs) from 3 persons working in close contact with the animals were also collected, and the genetic characteristics and relatedness of the MRSA isolates from human and animal sources within the farm were investigated. After 2yr from the first isolation, we confirmed the presence of the same multidrug-resistant strain of MRSA sequence type (ST)1, clonal complex (CC)1, spa type t127, staphylococcal cassette chromosome mec (SCCmec) type IVa, showing identical pulsed field gel electrophoresis (PFGE) and resistance profiles at the farm level in bulk tank milk. Methicillin-resistant S. aureus isolates were detected in 2 out of 556 (0.34%) individual milk samples, whereas MSSA isolates were detected in 10 samples (1.8%). The MRSA were further isolated from udder skin samples from the 2 animals that were MRSA-positive in milk and in 2 of the 3 examined farm personnel. All MRSA isolates from both ovine and human samples belonged to ST(CC)1, spa type t127, SCCmec type IVa, with some isolates from animals harboring genes considered markers of human adaptation. In contrast, all MSSA isolates belonged to ruminant-associated CC130, ST700, spa type t528. Analysis by PFGE performed on selected MRSA isolates of human and animal origin identified 2 closely related (96.3% similarity) pulsotypes, displaying only minimal differences in gene profiles (e.g., presence of the immune evasion cluster genes). Although we observed low MRSA intra-farm prevalence, our findings highlight the importance of considering the possible zoonotic potential of CC1 livestock-associated MRSA, in view of the ability to persist over years at the farm level. Biosecurity measures and good hygiene practices could be useful to prevent MRSA spread at the farm level and to minimize exposure in the community and in categories related to farm animal industry (e.g., veterinarians, farmers, and farm workers).
Between January and May 2012, a total of 286 bulk tank milk samples from dairy sheep farms located in central Italy were tested for the presence of Staphylococcus aureus. One hundred fifty-three samples were positive for S. aureus (53.5%), with an average count of 2.53 log cfu/mL. A total of 679 S. aureus colonies were screened for methicillin resistance by the cefoxitin disk diffusion test, and 104 selected cefoxitin-susceptible isolates were also tested for their susceptibility to other antimicrobials representative of the most relevant classes active against Staphylococcus spp. by using the Kirby-Bauer disk diffusion method. Two methicillin-resistant Staphylococcus aureus (MRSA) isolates, carrying respectively the mecA and the mecC genes, were detected in 2 samples from 2 different farms (prevalence 0.7%). The mecA-positive MRSA isolate was blaZ positive, belonged to spa type t127, sequence type (ST)1, clonal complex (CC)1, carried a staphylococcal cassette chromosome mec (SCCmec) type IVa, and was phenotypically resistant to all the β-lactams tested and to erythromycin, streptomycin, kanamycin, and tetracycline. The mecC-positive MRSA isolate was negative for the chromosomally or plasmid-associated blaZ gene but positive for the blaZ allotype associated with SCCmec XI (blaZ-SCCmecXI), belonged to spa type 843, ST(CC)130, carried a SCCmec type XI, and was resistant only to β-lactams. Both MRSA were negative for the presence of specific immune-evasion and virulence genes such as those coding for the Panton-Valentine leucocidin, the toxic shock syndrome toxin 1, and the immune evasion cluster genes. Regarding the presence of the major S. aureus enterotoxin genes, the mecC-positive MRSA tested negative, whereas the ST (CC)1 mecA-positive MRSA harbored the seh gene. Among the 104 methicillin-susceptible S. aureus isolates examined for antimicrobial susceptibility, 63 (60.58%) were susceptible to all the antimicrobials tested, and 41 (39.42%) were resistant to at least 1 antimicrobial. In particular, 23 isolates (22.12%) were resistant to tetracycline, 16 (15.38%) to sulfonomides, 14 (13.46%) to trimethoprim and sulfamethoxazole, and 9 (8.65%) to ampicillin, whereas only 1 isolate was resistant to both fluoroquinolones and aminoglycosides. The high prevalence of S. aureus found in bulk tank milk samples and the isolation of MRSA, although at a low prevalence, underlines the importance of adopting control measures against S. aureus in dairy sheep farms to minimize the risks for animal and public health. Moreover, this study represents the first report of mecC-positive MRSA isolation in Italy and would confirm that, among livestock animals, sheep might act as a mecC-MRSA reservoir. Although this lineage seems to be rare in dairy sheep (0.35% of farms tested), because mecC-positive MRSA are difficult to detect by diagnostic routine methods employed for mecA-positive livestock-associated MRSA, diagnostic laboratories should be aware of the importance of searching for the mecC gene in all the mecA-negative S. aureus iso...
Staphylococcus aureus is a major cause of clinical infections in humans and its enterotoxins cause foodborne disease. In the present study, we tested a total of 51 isolates of S. aureus from small-ruminant dairy farms with artisan dairy facilities, all located in Latium, Italy. The farms have a known history of a high prevalence of methicillin-resistant S. aureus (MRSA). Most of the MRSA isolates (27 of 51) belonged to spa-type t127 (43.1%), followed by t2678 (3.9%), t044 (2%), t1166 (2%), and t1773 (2%). PFGE performed on mecA positive strains identified one cluster (≥ 80% of similarity), comprising 22 MRSA. Nine of twenty-two MRSA isolates were assigned human host origin, and 13 isolates did not belong to a specific host. During the characterization study, one strain isolated from bulk tank milk samples harbored the pvl gene; the strain was not enterotoxigenic with a non-specific host according to the biotyping scheme, highlighting the possible emerging risk of transmission of bacterial virulence factors by foods, the environment, and foodhandlers. These findings stress the importance of hygienic measures at all processing steps of the food production chain and underline that monitoring for the presence of MRSA throughout the food chain is essential for public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.