Despite the proliferation of proteins that can form filaments or phase-separated condensates, it remains unclear how this behavior is distributed over biological networks. We have found that 60 of the 440 yeast metabolic enzymes robustly form structures, including 10 that assemble within mitochondria. Additionally, the ability to assemble is enriched at branch points on several metabolic pathways. The assembly of enzymes at the first branch point in de novo purine biosynthesis is coordinated, hierarchical, and based on their position within the pathway, while the enzymes at the second branch point are recruited to RNA stress granules. Consistent with distinct classes of structures being deployed at different control points in a pathway, we find that the first enzyme in the pathway, PRPP synthetase, forms evolutionarily conserved filaments that are sequestered in the nucleus in higher eukaryotes. These findings provide a roadmap for identifying additional conserved features of metabolic regulation by condensates/filaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.