Apart from sugar production, the sugarcane plant is now viewed as a high value lowcost feedstock for renewable energy. However, in depth studies on the biomass potential of the crop are relatively new and current varieties have not been optimised to achieve the required high biomass yield for different end-uses. The objective of this study was to examine the possibility of using multivariate data analysis (MVDA) techniques in the selection of different types of high biomass canes. Sixty genotypes of different generations of crosses were evaluated for 18 inter-related traits. Principal component analysis compressed the different characters into five major principal components (PCs). The first two explained 77 % of total variation. PC1 emphasised on the cane quality traits while PC2 stressed on biomass characteristics. The biplot with the two PCs was very helpful in visualising the existing variations in the population. Cluster analysis defined six major groups in the population. Candidates from three of them were found suitable for commercial exploitation, for either sugar, fibre, or both as the main end-products. The MVDA techniques were thus found to be very effective in assessing the extent of genetic divergence between genotypes in the population and in the selection of different types of high biomass canes for multipurpose use. It was also clear that sucrose content was positively associated with cane diameter while high fibre varieties tended to be thinner and taller than the traditional commercial varieties.
Significant genetic diversity for sucrose and fibre percentages exists in the species that served as the foundation of present day sugarcane cultivars. However, information is lacking worldwide on the recent contributions of sugarcane crop wild relatives (mainly Saccharum, Erianthus and Miscanthus wild species) in developing new varieties. There is renewed interest in using those relatives for creating new varieties to use as a dedicated bioenergy crop with higher fibre. This study focuses on past data analysis of sugarcane breeding in Mauritius with the objective to assess the efficiency in exploiting sugarcane wild relatives since 1970s to date. Pedigree analyses helped retrace the parentages of elite inter-specific hybrids reaching the final stages of selection. The studies confirmed the high prevalence of a few ‘wonder canes’ (successful hybrids with wild canes produced in the beginning of last century) among the ancestors of Mauritian varieties. Among the wild relatives, eight Saccharum spontaneum, two S. robustum, and one Erianthus clones were involved in generating elite genotypes worth evaluating at the advanced variety trial stages. A few early generation hybrids were released in the past for industrial exploitation, the latest one being M 1002/02 in 2016, with sugar as the primary output. Recent studies on the biomass potential and fibre yield of inter-specific hybrids are giving promising results, which expands the horizon in the use of sugarcane wild relatives for the generation of novel type of sugarcane varieties for multiple end-uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.