The torsional mesh stiffness is one of the most important characteristics of spur gears. This paper presents the development of detailed two-and three-dimensional finite element models which can be used to calculate the torsional mesh stiffness. Using the parametrical design language of the FE software ANSYS the models offer the possibility to generate various different pairs of spur gears and include an adaptive meshing algorithm for the contact zones. Due to the short computation times the 2D model is well suited to simulate a variety of different gear pairs in a short time period. The more complex 3D model features more options in terms of investigating tooth face modifications for further studies. The resulting values of the torsional stiffness can be used -for example -in multi body simulations of gearboxes.The results from the 2D FEA are used to derive a simple formula for the combined torsional stiffness of spur gears in mesh. The results presented are based on the individual stiffness of the three main components -body, teeth and contact. Hence, the introduced formula uses these three parts to determine the overall stiffness for a wide range of gears and gear ratio combinations.Finally, the results from both the two-and three-dimensional finite element model and the derived formula are compared and the results from the 3D model are checked against results obtained by analytical equations.
Wear in chain joints leads to an increased clearance and thus an elongation of the entire chain which determines the lifetime of the chain. This particularly applies for chains that are used in timing chain drives. The aim of this study was to investigate especially the influences of lubricant additives and a contamination with carbon black on the tribological behavior of chain joint components and to correlate these influences to observable changes in topographical and chemical surface properties. A precisely defined contact and load situation is essential for generating a comparable series of samples for surface analyses. To meet this requirement, chain joint component samples from tests on a linear reciprocating model tribometer were used for the following analyses. But to connect the results to the realistic situation regarding the typical wear rates of the subjected chain types, suited experimental parameters were selected. Topographical, structural, and chemical characterization of the worn surface regions of the components were performed after the tribological loading. The results show the influence of the lubricant, the additive, and the contamination with carbon black especially on the chemical properties of the component surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.