This work explains the comparison of various dc-dc converters for photovoltaic systems. In recent day insufficient energy and continues increasing in fuel cost, exploration on renewable energy system becomes more essential. For high and medium power applications, high input source from renewable systems like photovoltaic and wind energy system turn into difficult one, which leads to increase of cost for installation process. So the generated voltage from PV system is boosted with help various boost converter depends on the applications. Here the various converters are like boost converter, buck converter, buck-boost converter, cuk converter, sepic converter and zeta converter are analysed for photovoltaic system, which are verified using matlab / simulink.
The effect of sintering temperature on the densification mechanisms, microstructural evolution and mechanical properties of spark plasma sintered (SPS) compacts of a gas atomized Al-4.5 wt.%Cu alloy was investigated. The powder particles whose size varied between 10 to 500 μm was subjected to SPS at 400, 450 and 500 • C at a pressure of 30 MPa. The compact sintered at 500 • C exhibited fully dense microstructure which was characterized by a uniform distribution of the secondary phase, free of dendrites and micro-porosity. Microscopy and the SPS data reveal that the events such as particle rearrangement, localized deformation and bulk deformation appear to be the sequence of sintering mechanisms depending on the size range of powder particles used for consolidation. The compact sintered at 500 • C exhibited the highest hardness and compression strength since the microstructure was characterized by fine distribution of precipitates, large fraction of submicron grains and complete metallurgical bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.