The development process for new safety components includes break load tests, where the component undergoes very large strains. Besides the mechanical properties of the steel, which are changed by the forming process, the break load depends on the quality of the stamped edges. Target of this paper is to investigate whether a hole-tensile test with a stamped hole can demonstrate the effects of stamped-edge quality on the load bearing capacity – and secondary, how such a test procedure can be reproduced with a multi-scale FEM procedure. A series of Hole Tensile Tests (HTT) has been performed with a HSLA steel grade. Here, only minor differences in break load and total elongation were found. The local strain just prior to breakage at the edge of the stamped hole shows remarkably high values, but little difference is found when comparing a machined sample to stamped samples. The multi-scale FEM approach was demonstrated using literature data for dual-phase steel, which is known to be more sensitive to edge cracks. Indeed, a stamped edge, which includes significant hardening and pre-damage, shows earlier fracture in this FEM calculation – however, the crack propagation, which is needed to capture the full breakage of the HTT sample, is not modelled correctly – this limits the application of the method on safety components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.