To examine the persistence of preferential flow paths in a field soil, and to compare the leaching of a degradable contaminant with the leaching of a tracer, two field experiments were performed using a multi-compartment sampler (MCS). The first experiment was carried out during the snowmelt period in early spring, characterized by high infiltration fluxes from snowmelt. The second experiment was carried out in early summer with irrigation to mimic homogeneous rainfall. During the second experiment, the soil was warmer and degradation of the degradable contaminant was observed. For both experiments, the highest tracer concentrations were found in the same area of the sampler, but the leached tracer masses of the individual locations were not highly correlated. Thus, the preferential flow paths were stable between the two experiments. With a lower infiltration rate, in the second experiment, more isolated peaks in the drainage and the leached masses were found than in the first experiment. Therefore, it is concluded that the soil heterogeneity is mainly caused by local differences in the soil hydraulic properties, and not by macropores. With higher infiltration rates, the high and low leaching cells were more clustered. The leached masses of the degradable contaminant were lower than the leached masses of the tracer, but the masses were highly correlated. The first-order degradation rate and the dispersivity were fitted with CXTFIT; the first-order degradation rate was 0.02 d<sup>−1</sup>, and the dispersivity varied between 1.9 and 7.1 cm. The persistence of the flow paths during the experiments suggests soil heterogeneity as the driver for heterogeneous flow and solute transport in this soil. At the MCS scale, heterogeneous snowmelt did not seem to have much influence on the flow and solute paths
Transport and degradation of de-icing chemical (containing propylene glycol, PG) in the vadose zone were studied with a lysimeter experiment and a model, in which transient water flow, kinetic degradation of PG and soil chemistry were combined. The lysimeter experiment indicated that aerobic as well as anaerobic degradation occurs in the vadose zone. Therefore, the model included both types of degradation, which was made possible by assuming advection-controlled (mobile) and diffusion-controlled (immobile) zones. In the mobile zone, oxygen can be transported by diffusion in the gas phase. The immobile zone is always water-saturated, and oxygen only diffuses slowly in the water phase. Therefore, the model is designed in a way that the redox potential can decrease when PG is degraded, and thus, anaerobic degradation can occur. In our model, manganese oxide (MnO2, which is present in the soil) and NO3- (applied to enhance biodegradation) can be used as electron acceptors for anaerobic degradation. The application of NO3- does not result in a lower leaching of PG nor in a slower depletion of MnO2. The thickness of the snowcover influences the leached fraction of PG, as with a high infiltration rate, transport is fast, there is less time for degradation and thus more PG will leach. The model showed that, in this soil, the effect of the water flow dominates over the effect of the degradation parameters on the leaching at a 1-m depth.
Transport of a tracer and a degradable solute in a heterogeneous soil was measured in the field, and simulated with several transient and steady state infiltration rates. Leaching surfaces were used to investigate the solute leaching in space and time simultaneously. In the simulations, a random field for the scaling factor in the retention curve was used for the heterogeneous soil, which was based on the spatial distribution of drainage in an experiment with a multi-compartment sampler. As a criterion to compare the results from simulations and observations, the sorted and cumulative total drainage in a cell was used. The effect of the ratio of the infiltration rate over the degradation rate on leaching of degradable solutes was investigated. Furthermore, the spatial distribution of the leaching of degradable and non-degradable solutes was compared. <br><br> The infiltration rate determines the amount of leaching of the degradable solute. This can be partly explained by a decreasing travel time with an increasing infiltration rate. The spatial distribution of the leaching also depends on the infiltration rate. When the infiltration rate is high compared to the degradation rate, the leaching of the degradable solute is similar as for the tracer. The fraction of the soil that contributes to solute leaching increases with an increasing infiltration rate. This fraction is similar for a tracer and a degradable solute. With increasing depth, the leaching becomes more homogeneous, as a result of dispersion. The spatial distribution of the solute leaching is different under different transient infiltration rates, therefore also the amount of leaching is different. With independent stream tube approaches, this effect would be ignored
Transport of a tracer and a degradable solute in a heterogeneous soil was measured in the field, and simulated with several transient and steady state infiltration rates. Leaching surfaces were used to investigate the solute leaching in space and time simultaneously. In the simulations, a random field for the scaling factor in the retention curve was used for the heterogeneous soil, which was based on the spatial distribution of drainage in an experiment with a multi-compartment sampler. As a criterion to compare the results from simulations and observations, the sorted and cumulative total drainage in a cell was used. The effect of the ratio of the infiltration rate over the degradation rate on leaching of degradable solutes was investigated. Furthermore, the spatial distribution of the leaching of degradable and non-degradable solutes was compared.
The infiltration rate determines the amount of leaching of the degradable solute. This can be partly explained by a decreasing travel time with an increasing infiltration rate. The spatial distribution of the leaching also depends on the infiltration rate. When the infiltration rate is high compared to the degradation rate, the leaching of the degradable solute is similar as for the tracer. The fraction of the pore space of the soil that contributes to solute leaching increases with an increasing infiltration rate. This fraction is similar for a tracer and a degradable solute. With increasing depth, the leaching becomes more homogeneous, as a result of dispersion. The spatial distribution of the solute leaching is different under different transient infiltration rates, therefore, also the amount of leaching is different. With independent stream tube approaches, this effect would be ignored
To examine the persistence of preferential flow paths in a field soil, and to compare the leaching of a degradable contaminant with the leaching of a non-degradable tracer, we did two field experiments, using a multicompartment sampler. The first experiment was done during the snowmelt period in early spring, characterized by high infiltration fluxes from snowmelt. The second experiment was done in early summer with irrigation to mimic homogeneous rainfall. In the second experiment, the soil was warmer and degradation of the degradable contaminant was observed. For both experiments, the highest tracer concentrations were found in the same area of the sampler, but the leached tracer masses of the individual locations were not highly correlated. Thus, the preferential flow paths were stable between seasons. With a lower infiltration rate, in the second experiment, more isolated peaks in the drainage and the leached masses were found than in the first experiment. Therefore it is concluded that the soil heterogeneity is mainly caused by local differences in the soil hydraulic properties, and not by macropores. With higher infiltration rates, the clustering of high and low leaching cells was higher. The leached masses of the degradable contaminant were lower than the leached masses of the non-degradable tracer, but the masses were highly correlated. The first-order degradation rate was 0.02 d<sup>−1</sup>. The dispersivity varied between 1.9 and 7.1 cm. Soil heterogeneity is the main reason for the heterogeneous water flow and solute transport in this soil. Heterogeneous melting of snow does not influence the heterogeneous flow in the soil much at this scale
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.