Metallothioneins (MTs) are a family of multifunctional proteins involved, among others, in stress response. The Cadmium (Cd)-MT gene of the Roman snail (Helix pomatia), for example, encodes for a protein induced upon cadmium exposure. While our previous studies have demonstrated that the expressed Cd-MT isoform of Roman snails assists detoxification of cadmium, the present work focuses on the potential plasticity of this gene in response to a variety of environmental stressors playing a crucial role in the specific ecological niche of H. pomatia. Our hypothesis is based on a bioinformatic approach involving gene sequencing, structural and in silico analysis of transcription factor binding sites (TFBs), and a comparison of these features with other MT genes. Our results show that the Roman snail's Cd-MT gene not only is the largest known MT gene, but also contains--apart from the regulatory promoter region--several intronic repeat cassettes of putative TFBs suggested to be involved in environmental stress response, immune competence, and regulation of gene expression. Moreover, intronic scaffold/matrix attachment regions (S/MARs) and stress-induced duplex destabilization sites confer a high potential for epigenetic gene regulation. This suggested regulatory plasticity is also supported by physiological data showing that Cd-MT in Roman snails can be induced differentially not only after cadmium exposure, but also in response to nonmetallic environmental stressors. It is concluded that structural analysis combined with bioinformatic screening may constitute valuable tools for predicting the potential for plasticity and niche-specific adaptation of stress-responsive genes in populations living under rapidly changing environmental conditions.
The aim of the present work was to study the effect of Cd2+ exposure on metallothionein (MT) induction and on the distribution of metals (Cd, Cu, and Zn) in the terrestrial pulmonate Helix aspersa. In particular, the soluble and nonsoluble pools of the accumulated metals and their tissue distribution in uncontaminated and contaminated edible snails were investigated after a two-week exposure to Cd2+. In the soluble cytosolic pool of the midgut gland of H. aspersa, three metal-specific putative MT isoforms were separated following a fractionation protocol with diethylaminoethyl cellulose, size-exclusion chromatography, ultrafiltration, and reversed-phase high-performance liquid chromatography (RP-HPLC). Interestingly, one of the above isoforms seems to bind both Cd and Cu, which may in addition mobilize, after induction by Cd2+, some of the intracellular Cu and, thus, perhaps increase the Cu pool in the cytosolic fraction. The cDNA and its translated amino acid sequence of a Cd2+-binding MT isoform from the snail midgut gland was characterized and attributed to one of the putative MT isoforms obtained by RP-HPLC. The amino acid sequence of this Cd-MT isoform of H. aspersa differed from similar sequences described in other terrestrial pulmonates, such as Helix pomatia or Arianta arbustorum, by only a few amino acids (n = 4 and 8, respectively). That the identified Cd-MT from H. aspersa is inducible by Cd2+ also was shown, chromatographic evidence aside, by a specific polymerase chain reaction protocol on a cDNA basis, which included a noninducible housekeeping gene as a control.
Gastropods are able to withstand fluctuating availabilities of nonessential trace elements such as cadmium by induction of Cd-specific metallothionein isoform (Cd-MT) expression. As in other species, the induction mechanism involves the binding of metal-regulatory transcription factors (MTF-1 or MTF-2) to metal responsive elements (MREs) in the MT promoter regions. Cd-dependent transcription of Cd-MT genes was assessed by quantitative real time PCR in two helicid gastropods, Helix pomatia and Cantareus aspersus, over a period of eight days. The promoter regions of the Cd-MT genes of the two species were sequenced and compared regarding the position of MREs and other relevant potential transcription factor binding sites (TFBs). Cd-MT gene transcription is induced after Cd exposure in Helix pomatia and Cantareus aspersus, showing a transient peak in Helix pomatia, contrasting with a persistent induction rate in Cantareus aspersus. Since the existence of MTF-2 was verified in both species, differing transcription patterns of Cd-MT genes must be due to functional differences in their metal-responsive promoter regions. Both promoters contain a proximal cluster of three MREs overlapping with TFBs for the transcriptional regulator Sp1. In contrast to Cantareus aspersus, however, the Cd-MT gene of Helix pomatia hosts an additional distal MRE overlapping with a Sp1 binding site and a CACCC box. Inhibitory effects of MRE overlapping Sp1 binding sites were observed in other MT genes. We therefore suggest that transient Cd-MT transcription upon Cd(2+) exposure in Helix pomatia may be the result of an inhibitory action of the distal MRE cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.